Перевод единиц измерения светочувствительности iso din гост. Автоматизированные системы управления предприятием (асуп) и госты. Разработка рабочей документации на систему и ее части

Название (англ.): Industrial automation systems and integration. Product data representation and exchange. Part 203. Application protocol. Configuration controlled design Область применения: Настоящий стандарт определяет интегрированные ресурсы, необходимые для описания области обмена данными между прикладными системами и информационных требований для трехмерных конструкций (проектов) механических деталей и сборочных единиц. Конфигурация в этом контексте охватывает только данные и процессы, которые управляют трехмерными данными о конструкции изделия. Понятие обмена используется с целью распространения области применения стандарта только на данные, используемые как часть трехмерного определения изделия. Организации, обменивающиеся данными в соответствии с настоящим стандартом, могут быть связаны договорными отношениями, которые в стандарте не рассмотрены.
Область применения настоящего стандарта охватывает:
а) изделия, состоящие из механических деталей и сборочных единиц;
b) данные, определяющие изделие и управляющие его конфигурацией, относящиеся к стадии проектирования изделия;
с) изменение проекта (конструкции) и данные, связанные с документированием процесса внесения изменений;
d) пять типов представлений формы детали, которые включают каркасное и поверхностное представление без топологии, каркасную геометрию с топологией, разнородные поверхности с топологией, фасетное граничное представление и граничное представление;
е) альтернативные представления данных по различным правилам (дисциплинам) на стадии проектирования в жизненном цикле изделия;
f) обозначение государственных, отраслевых, фирменных или других спецификаций для проекта (конструкции), процесса, обработки поверхности и материалов, которые определены проектировщиком для конструируемого изделия;
g) государственное, отраслевое, фирменное или прочее обозначение стандартных частей с целью включения их в конструкцию (проект) изделия;
h) данные, необходимые для контроля за ходом проекта;
i) данные, необходимые для контроля за утверждением проекта, отдельных аспектов проекта или управления конфигурацией изделия;
j) данные, указывающие поставщика изделия или его проекта и, при необходимости, определенную информацию о поставщике;
k) обозначение контракта и ссылка на него, если деталь разрабатывается согласно контракту;
l) обозначение уровня классификации защиты (конфиденциальности) отдельной детали или детали, являющейся компонентом сборочной единицы;
m) данные, применяемые при анализе проекта, или результаты его проверки, используемые для обоснования изменений, вносимых в проект.
Область применения настоящего стандарта не охватывает:
а) данные, применяемые при анализе проекта, или результаты его проверки, не используемые для обоснования изменений, вносимых в проект;
b) данные об изменениях в проекте по результатам исходного анализа до окончания данного проекта;
с) данные, определяющие изделие и управление его конфигурацией, относящиеся к любым стадиям жизненного цикла создания изделия помимо его проектирования;
d) коммерческие данные для управления проектированием конструкции;
е) альтернативные представления данных по различным правилам (дисциплинам), кроме стадии проектирования (например, на стадии производства);
f) использование трехмерной булевой геометрии для представления предметов проектирования;
g) данные, относящиеся к визуальному представлению любой формы изделия или управлению его конфигурацией

ГОСТ 24.103-84
АВТОМАТИЗИРОВАННЫЕ СИСТЕМЫ УПРАВЛЕНИЯ.
ОСНОВНЫЕ ПОЛОЖЕНИЯ

1. НАЗНАЧЕНИЕ И КЛАССИФИКАЦИОННЫЕ ПРИЗНАКИ ВИДОВ АСУ

1.1. АСУ предназначена для обеспечения эффективного функционирования объекта управления путем автоматизированного выполнения функций управления.

Степень автоматизации функций управления определяется производственной необходимостью, возможностями формализации процесса управления и должна быть экономически или (и) социально обоснована.

1.2. Основными классификационными признаками, определяющими вид АСУ, являются:

  • сфера функционирования объекта управления (промышленность, строительство, транспорт, сельское хозяйство, непромышленная сфера и т.д.)
  • вид управляемого процесса (технологический, организационный, экономический и т.д.);
  • уровень в системе государственного управления, включения управление народным хозяйством в соответствии с действующими схемами управления отраслями (для промышленности: отрасль (министерство), всесоюзное объединение, всесоюзное промышленное объединение, научно-производственное объединение, предприятие (организация), производство, цех, участок, технологический агрегат).

2. ФУНКЦИИ, СОСТАВ И СТРУКТУРЫ АСУ

2.1. Функции АСУ устанавливают в техническом задании на создание конкретной АСУ на основе анализа целей управления, заданных ресурсов для их достижения, ожидаемого эффекта от автоматизации и в соответствии со стандартами, распространяющимися на данный вид АСУ.

2.2. Каждая функция АСУ реализуется совокупностью комплексов задач, отдельных задач и операций.

2.3. Функции АСУ в общем случае включают в себя следующие элементы (действия):

  • планирование и (или) прогнозирование;
  • учет, контроль, анализ;
  • координацию и (или) регулирование.

Необходимый состав элементов выбирают в зависимости от вида конкретной АСУ.

2.4. Функции АСУ можно объединять в подсистемы по функциональному и другим признакам.

ГОСТ 24.104-85
Автоматизированные системы управления системы управления
Общие требования

1.1.2. Ввод в действие АСУ должен приводить к полезным технико-экономическим, социальным или другим результатам, например:

  • снижению численности управленческого персонала;
  • повышению качества функционирования объекта управления;
  • повышению качества управления и др.

1.2.1. АСУ в необходимых объемах должна автоматизированно выполнять:

  • сбор, обработку и анализ информации (сигналов, сообщений, документов и т.п.) о состоянии объекта управления;
  • выработку управляющих воздействий (программ, планов и т.п.);
  • передачу управляющих воздействий (сигналов, указаний, документов) на исполнение и ее контроль;
  • реализацию и контроль выполнения управляющих воздействий;
  • обмен информацией (документами, сообщениями и т.п.) с взаимосвязанными автоматизированными системами.

1.5.2. Программное обеспечение АСУ должно обладать следующими свойствами:

  • функциональная достаточность (полнота);
  • надежность (в том числе восстанавливаемость, наличие средств выявления ошибок);
  • адаптируемость;
  • модифицируемость;
  • модульность построения и удобство эксплуатации.

ДОПОЛНИТЕЛЬНЫЕ ТРЕБОВАНИЯ К АСУ ПРЕДПРИЯТИЯМИ, ПРОИЗВОДСТВЕННЫМИ И НАУЧНО-ПРОИЗВОДСТВЕННЫМИ ОБЪЕДИНЕНИЯМИ

1. АСУ должна повышать эффективность производственно-хозяйственной деятельности предприятиями, производственного или научно-производственного объединения (в дальнейшем - предприятия).

2. АСУ предприятием (АСУП) должна обеспечивать автоматизированный сбор и обработку информации с широким использованием методов оптимизации по основным задачам и подсистемам управления общезаводского и цехового уровня, в том числе при необходимости в реальном масштабе времени в режиме телеобработки и диалога.

3. АСУП должна быть реализована в виде совокупности совместно функционирующих подсистем, взаимодействие между которыми должно происходить через общую (единую или распределенную) базу данных.

4. Организационное обеспечение АСУП должно предусматривать совершенствование методов управления и структуры системы управления предприятиями при создании и развитии АСУП.

ГОСТ 34.003-90
Автоматизированные системы
Термины и определения

1. Автоматизированные системы. Общие понятия

1.1 автоматизированная система; AC: Система, состоящая из персонала и комплекса средств автоматизации его деятельности, реализующая информационную технологию выполнения установленных функций.

en automated system; AS

Примечания:

1. В зависимости от вида деятельности выделяют, например, следующие виды АС: автоматизированные системы управления (АСУ), системы автоматизированного проектирования (САПР), автоматизированные системы научных исследований (АСНИ) и др.

2. В зависимости от вида управляемого объекта (процесса) АСУ делят, например, на АСУ технологическими процессами (АСУТП), АСУ предприятиями (АСУП) и т.д.

1.2 интегрированная автоматизированная система; ИАС: Совокупность двух или более взаимоувязанных АС, в которой функционирование одной из них зависит от результатов функционирования другой (других) так, что эту совокупность можно рассматривать как единую АС

en integrated AS

Общетехнические термины и пояснения, применяемые в области автоматизированных систем

  1. Система :
    Совокупность элементов, объединенная связями между ними и обладающая определенной целостностью.
  2. Автоматизированный процесс :
    Процесс, осуществляемый при совместном участии человека и средств автоматизации.
  3. Автоматический процесс :
    Процесс, осуществляемый без участия человека.
  4. Информационная технология :
    Приемы, способы и методы применения средств вычислительной техники при выполнении функций сбора, хранения, обработки, передачи и использования данных.
  5. Цель деятельности :
    Желаемый результат процесса деятельности.
  6. Критерий эффективности деятельности :
    Соотношение, характеризующее степень достижения цели деятельности и принимающее различные числовые значения в зависимости от используемых воздействий на объект деятельности или конкретных результатов деятельности.
  7. Объект деятельности :
    Объект (процесс), состояние которого определяется поступающими на него воздействиями человека (коллектива) и, возможно, внешней среды.
  8. Алгоритм :
    Конечный набор предписаний для получения решения задачи посредством конечного количества операций.
  9. Информационная модель :
    Модель объекта, представленная в виде информации, описывающей существенные для данного рассмотрения параметры и переменные величины объекта, связи между ними, входы и выходы объекта и позволяющая путем подачи на модель информации об изменениях входных величин моделировать возможные состояния объекта.
  10. Управление :
    Совокупность целенаправленных действий, включающая оценку ситуации и состояния объекта управления, выбор управляющих воздействий и их реализацию.
  11. Автоматизированный производственный комплекс :
    Автоматизированный комплекс, согласованно осуществляющий автоматизированную подготовку производства, само производство и управление им.
__________________

На моем сайте есть несколько обзоров фотоэкспонометров – устройств для измерения уровня освещенности объекта съемки и расчета экспозиции.

В обзорах я сравниваю экспозицию, рассчитанную на советском экспонометре с теми параметрами, которые рекомендует моя цифрозеркалка.

Давайте задумаемся, а корректно ли такое сравнение? Ведь одним из параметров, который участвует в расчете экспозиции, является чувствительность пленки.

На цифровых аппаратах чувствительность задается в единицах ISO, а на советских экспонометрах (в т.ч. встроенных в фотоаппараты) - в единицах ГОСТ.

Если вы обратили внимание, то при сравнении расчетов экспозиции, я приравниваю эти единицы. С небольшой поправкой, например, на то, что советский экспонометр имеет на своей шкале отметку 130 единиц, а современный аппарат позволяет выставить только 125.

Можно ли приравнивать единицы ГОСТ и ISO?

В форумах я несколько раз встречал, например, мнения такого рода:

“ГОСТ 65 = 100 ISO

ГОСТ 130 = 200 ISO”

Нужно разобраться.

Для начала немного истории.

Во времена СССР системы ISO еще не было как таковой, и шкалы светочувствительности были национальными.

С 1928 года в Союзе по ГОСТу 2817-45 применялась шкала светочувствительности Хёртера и Дриффилда (англ. H&D). Система эта появилась в Англии еще в 1890 году.

Сокращенно у нас в стране эту шкалу обозначали как «Х и Д».
В 1951 году в СССР перешли на другую шкалу - ГОСТ 2817-50. С этого времени советские единицы чувствительности и начали называть просто «ГОСТ»

Шкала ГОСТ была близкой к американской шкале ASA (American Standards Association) образца 1947 года.

Тут я сделаю важную оговорку. Если подходить максимально математически строго, то шкалы ГОСТ и ASA - отличаются.

ГОСТ не был полностью скопирован с ASA. Естественно, в СССР и США были разные походы к расчетам, основанные на прочих разных стандартах, допусках, традициях.

Тем не менее, если в математику не погружаться, то шкалы будут ОЧЕНЬ близкими. Такими близкими, что на маркировке экспонометров их просто приравнивали.

Также нужно принимать во внимание, что сам стандарт ASA не стоял на месте. Например, в Wiki в соответствующей статье приведена таблица, в которой единицы чувствительности соответствуют стандарту 1960 года.
Параллельно с ASA, в СССР использовалась немецкая шкала DIN (Deutsche Industrie Normen). Система эта была введена в Германии в 1934 году.

Шкала DIN стоит особняком среди прочих. Если у всех иных единиц измерения - реальная чувствительность пленки удваивается при удвоении номинальной единицы измерения, то по шкале DIN удвоение чувствительности происходит при увеличении единицы измерения примерно на 3.

Так, 65 (ASA, ГОСТ) = 19 (DIN), а 125 (ASA, ГОСТ) = 22 (DIN)

Запись единиц DIN, как показана в примере выше была введена в 1960 году. До этого положено было показывать дробь со знаменателем 10 и значком градуса.

Например, так - «22/10°». Смотрите пример на первом фото.

В 1957 году формула для расчета DIN менялась. Например, 18 DIN стал 21 DIN. В 1960 году эта шкала была согласована с американским стандартом ASA.

Стандарт ISO (от одноименной организации International Standards Organization) был принят в 1974 году. Мудрить не стали. Стандарт просто объединяет ASA и DIN.

Полная запись чувствительности по ISO выглядит так: «250/25°». 250 – это ASA, 25 - DIN.

В СССР в 1987 году был принят новый ГОСТ (10691-84) на светочувствительность. Этот ГОСТ был приведен в соответствие с международным стандартом ISO.

Стандарт чувствительности цифровой техники описывает ISO 12232:2006

Вот такая история.

Что мы имеем в сухом остатке?

Первое.

Стандарты измерения чувствительности, как иностранные, так и советские - менялись с ходом времени. 125 единиц 50-х годов, строго говоря, не одно и тоже со 125 единицами 80-х.

ГОСТов, на самом деле, было два.

1. ГОСТ 2817-50 с 1951 по 1986

2. ГОСТ 10691-84 с 1987 по сей день как бы….

«Х и Д» я не учитываю, так как эта шкала имела имя собственное, хотя на нее тоже, конечно, был ГОСТ.

Изменения, между тем, не были слишком уж радикальными. Менялись формулы, стандарты приводились в соответствие друг к другу.

Девальваций и деноминаций с целью именно сместить шкалы - не проводилось.

Второе.

Советский ГОСТ всегда был схож с ASA. Стандарт ISO также создан на основе ASA. Новый советский ГОСТ специально выравнивался по ISO.

Вывод:

ГОСТ в достаточной степени соответствует ISO. Причем и новый ГОСТ и старый, который с 1951 года.

Да, полного арифметического тождества не будет. Но мы ведь не анализ формул проводим, а практическую сторону вопроса изучаем.

Откуда же информация о несоответствии, которая описана в самом начале?

Я думаю, что ноги тут растут вот из такой таблицы:

Маркировка шкалы экспонометра Светочувствительность фотопленки
ГОСТ 2817-50 ГОСТ 10691-84
16 16–20–25
32 32–40–50
65 64–80–100
130 125–160–200
250 250–320–400

О чем говорит таблица?

В фотоэкспонометрах, рассчитанных на старый ГОСТ часто были указаны только основные - дискретные - значения чувствительности.

Ассортимент чувствительности пленок был шире и содержал также промежуточные значения.

Так вот, таблица показывает, какие типы пленок по новому ГОСТу соответствуют каждому значению, выставляемому в экспонометре по старому ГОСТу.

Жирные значения в правой колонке дают наибольшее соответствие.

Так, если вы с помощью древнего советского экспонометра (при условии, что он сохранил работоспособность и точность), определили экспозицию для пленки, чувствительностью 130 единиц ГОСТ, то в свой цифровой аппарат вы можете переносить эту экспозицию и указывать чувствительность матрицы 125 или 160 или 200 ISO.

Для всех трех вариантов результат будет хорошим. Но ближе всего, да, считается 200.

При этом, чувствительность пленки, на которой написано 125 ГОСТ /ASA будет равна чувствительности цифровой матрицы, для которой задано 125 единиц ISO.

Таблица не сравнивает чувствительность фотоматериалов.

Таблица лишь говорит, что у древних экспонометров целый интервал чувствительности пленок соответствовал одному делению на калькуляторе. Любое из значений в интервале было верным. Но наименьшую погрешность по формулам давало наибольшее значение чувствительности.

Надеюсь не запутал. :о)

Верно ли утверждение

ГОСТ 65 = 100 ISO

ГОСТ 130 = 200 ISO?

Смотря для чего.

Во-первых, как я уже говорил, речь не о сопоставлении чувствительности фотоматериалов. Чувствительность по старому ГОСТу, по новому и по ISO примерно совпадают. Новый ГОСТ ближе, конечно.

На указанное соотношение стоит опираться только при использовании старых экспонометров для расчета экспозиции современных пленок / матриц.

Во-вторых, новый ГОСТ соответствует ISO. Поэтому, даже советский экспонометр, выпущенный после 1987 года (Свердловск-4, например) - должен давать корректные значения.

Хорошо, вопрос в лоб. :о)

Корректно ли я сравнивал работу экспонометров ОПТЭК и табличного с работой экспозамера цифрозеркалки в свете всего тут написанного? Эти экспонометры рассчитаны на старый ГОСТ.

Ответ: Да, по моему мнению, корректно. Я выставлял чувствительность ISO равную ГОСТ и это допустимо, согласно приведенной таблицы, хотя это не самый точный вариант.

Не самый точный, но из числа допустимых.

В любом случае, погрешность, с которой я при этом сталкиваюсь - меньше одного стопа, что совершенно нормально как для цифровой, так и тем более для пленочной фотографии.

Если у вас есть свое мнение на сей счет, – пишите!

На этом у меня все. Удачи!

P.S. Если вы часто покупаете что-то в интернет-магазинах, я могу посоветовать кэшбэк-сервис LetyShops . Он позволяет вернуть до 5% от стоимости покупки.
Для этого вам необходимо зарегистрироваться . Далее, на главной странице LetyShops выбирайте интересующий вас интернет-магазин. Их там более двух тысяч, представлены такие популярные площадки как AliExpress , My-Shop и многие другие. Перейдя по кнопке в магазин, совершаете там покупки как обычно.

После оформления заказа, на ваш счет в LetyShops будет начислен кэшбэк. Доступен для вывода он станет после получения товара.
Вывести деньги вы можете разными способами. Я перевожу на баланс сотового телефона. При этом варианте нет комиссий.
На вывод есть ограничение по минимальной сумме 500 руб, но если использовать промо-коды, которые легко найти в сети, то это ограничение снимается.

Очень приятный сервис LetyShops , рекомендую. Ссылка для регистрации .

Уважаемые читатели!
В социальных сетях для сайта Фототехника СССР созданы страницы – визитные карточки.
Если вам интересен мой ресурс, приглашаю поддержать проект и стать участником любого из сообществ. Делитесь опытом, высказывайте соображения, задавайте вопросы, участвуйте в дискуссиях!
Особое внимание обращаю на новую страничку в Instagram.

Предлагаю в первую очередь вспомнить для тех, кто знал и забыл, и определить для тех, кто забыл и не знал, что же такое – АСУ ТП.

Автоматизированная система управления технологическим процессом (АСУ ТП) – это комплекс технических и программных средств, предназначенный для автоматизации управления технологическим оборудованием на промышленных предприятиях.

В соответствии с ГОСТ 34.601-90 – “Автоматизированные Системы. Стадии создания”, процесс создания автоматизированных систем (АС, АСУТП) представляет собой совокупность упорядоченных во времени, взаимосвязанных, объединённых в стадии и этапы работ, выполнение которых необходимо и достаточно для создания АС, соответствующей заданным требованиям.

Стадии и этапы создания АС выделяются как части процесса создания по соображениям рационального планирования и организации работ, заканчивающихся заданным результатом.

Настоящий стандарт распространяется на автоматизированные системы (АС, АСУТП), используемые в различных видах деятельности (исследование, проектирование, управление и т.п.), включая их сочетания, создаваемые в организациях, объединениях и на предприятиях (далее – организациях).

Данный ГОСТ делит создание АС на стадии и этапы работ, которые мы рассмотрим ниже.

1. Первой стадией является: формирование требований к АС.

Этапы работ с их содержанием:

1.1 Обследование объекта и обоснование необходимости создания АСУТП:

  • сбор данных об объекте автоматизации и осуществляемых видах деятельности;
  • оценка качества функционирования объекта и осуществляемых видах деятельности, выявление проблем, решение которых возможно средствами автоматизации;
  • оценка (технико-экономической, социальной и т.д.) целесообразности создания АСУТП.

1.2 Формирование требований пользователя к АСУТП:

  • подготовка исходных данных для формирования требований АСУТП (характеристика объекта автоматизации, описание требований к системе, ограничения допустимых затрат на разработку, ввод в действие и эксплуатацию, эффект, ожидаемый от системы, условия создания и функционирования системы);
  • формулировка и оформление требований пользователя к АСУТП.

1.3 Оформление отчёта о выполненной работе и заявки на разработку АС (тактико-технического задания):

  • оформление отчета о выполненных работах на данной стадии;
  • оформление заявки на разработку АСУТП (тактико-технического задания) или другого заменяющего её документа с аналогичным содержанием.

2. Стадия: Разработка концепции АС.

2.1 Изучение объекта.

2.2 Проведение научно-исследовательских работ:

  • На этапах 2.1 и 2.2 – организация-разработчик проводит детальное изучение объекта автоматизации и необходимые научно-исследовательские работы (НИР), связанные с поиском путей и оценкой возможности реализации требований пользователя, оформляют и утверждают отчёты о НИР.

2.3 Разработка вариантов концепции АСУТП и выбор варианта концепции АСУТП, удовлетворяющего требованиям пользователя:

  • разработка альтернативных вариантов концепции, создаваемой АС и планов их реализации;
  • оценка необходимых ресурсов на их реализацию и обеспечение функционирования;
  • оценка преимуществ и недостатков каждого варианта;
  • сопоставление требований пользователя и характеристик предлагаемой системы и выбор оптимального варианта;
  • определение порядка оценки качества и условий приемки системы;
  • оценка эффектов, получаемых от системы.

2.4 Оформление отчёта о выполненной работе:

  • подготовка и оформление отчета, содержащий описание выполненных работ на стадии описания и обоснования предлагаемого варианта концепции системы.

3. Техническое задание.

3.1 Разработка и утверждение технического задания на создание АСУТП:

  • проведение разработки, оформление, согласование и утверждение технического задания на АС и, при необходимости, технических заданий на части АСУТП.

4. Эскизный проект.

4.1. Разработка предварительных проектных решений по системе и её частям:

  • функции АСУ ТП;
  • функции подсистем, их цели и эффекты;
  • состав комплексов задач и отдельных задач;
  • концепция информационной базы, её укрупнённая структура;
  • функции системы управления базой данных;
  • состав вычислительной системы;
  • функции и параметры основных программных средств.

4.2. Разработка документации на АСУТП и её части:

5. Технический проект.

5.1. Разработка проектных решений по системе и её частям:

  • На данном этапе производиться разработка общих решений:
  • по системе и её частям;
  • функционально-алгоритмической структуре системы;
  • по функциям персонала и организационной структуре;
  • по структуре технических средств;
  • по алгоритмам решения задач и применяемым языкам;
  • по организации и ведению информационной базы, системе классификации и кодирования информации;
  • по программному обеспечению.

5.2. Разработка документации на АС и её части:

  • разработка, оформление, согласование и утверждение документации в объеме, необходимом для описания полной совокупности принятых проектных решений, и достаточном для выполнения работ по созданию АСУТП.

5.3. Разработка и оформление документации на поставку изделий для комплектования АСУТП и (или) технических требований (технических заданий) на их разработку:

  • подготовка и оформление документации на поставку изделий для комплектования АСУ ТП;
  • определение технических требований и составление ТЗ на разработку изделий, не изготавливаемых серийно.

5.4. Разработка заданий на проектирование в смежных частях проекта объекта автоматизации:

  • На данном этапе осуществляют разработку, оформление, согласование и утверждение заданий на проектирование в смежных частях проекта объекта автоматизации для проведения строительных, электротехнических, санитарно-технических и других подготовительных работ, связанных с созданием АС.

6. Рабочая документация.

6.1. Разработка рабочей документации на систему и ее части:

  • разработка рабочей документации, содержащей все необходимые и достаточные сведения для обеспечения выполнения работ по вводу АСУТП в действие и ее эксплуатации, а также для поддерживания уровня эксплуатационных характеристик (качества) системы в соответствии с принятыми проектными решениями, ее оформление, согласование и утверждение.

6.2. Разработка или адаптация программ:

  • разработка программ и программных средств системы;
  • выбор, адаптация и (или) привязка приобретаемых программных средств, разработка программной документации.

7. Ввод в действие.

7.1. Подготовка объекта автоматизации к вводу АСУТП в действие:

  • работа по организационной подготовке объекта автоматизации к вводу АСУТП в действие, в том числе:
  • реализацию проектных решений по организационной структуре АСУТП;
  • обеспечение подразделений объекта управления инструктивно-методическими материалами;
  • внедрение классификаторов информации.

7.2. Подготовка персонала:

  • обучение персонала и проверку его способности обеспечить функционирование АСУТП.

7.3. Комплектация АС поставляемая изделиями (программными и техническими средствами, программно-техническими комплексами, информационными изделиями):

  • получение комплектующих изделий серийного и единичного производства, материалов и монтажных изделий;
  • проведение входного контроля их качества.

7.4. Строительно-монтажные работы:

  • выполнение работ по строительству специализированных зданий (помещений) для размещения технических средств и персонала АСУТП;
  • сооружение кабельных каналов;
  • выполнение работ по монтажу технических средств и линий связи;
  • испытание смонтированных технических средств;
  • сдача технических средств для проведения пусконаладочных работ.

7.5. Пусконаладочные работы:

  • автономная наладка технических и программных средств;
  • загрузка информации в базу данных и проверка системы ее ведения;
  • комплексная наладка всех средств системы.

7.6. Проведение предварительных испытаний:

  • испытания АС на работоспособность и соответствие техническому заданию в соответствии с программой и методикой предварительных испытаний;
  • устранение неисправностей и внесение изменений в документацию на АСУТП, в том числе эксплуатационную в соответствии с протоколом испытаний;
  • оформление акта о приемке АСУТП в опытную эксплуатацию.

7.7. Проведение опытной эксплуатации:

  • проведение опытной эксплуатации АСУТП;
  • анализ результатов опытной эксплуатации АС;
  • доработка (при необходимости) программного обеспечения АСУТП;
  • дополнительная наладка (при необходимости) технических средств АСУТП;
  • оформление акта о завершении опытной эксплуатации.

7.8. Проведение приемочных испытаний:

  • испытания на соответствие техническому заданию в соответствии с программой и методикой приемочных испытаний;
  • анализ результатов испытаний АС и устранение недостатков, выявленных при испытаниях;
  • оформление акта о приемке АС в постоянную эксплуатацию.

8. Сопровождение АС.

8.1. Выполнение работ в соответствии с гарантийными обязательствами:

  • осуществление работы по устранению недостатков, выявленных при эксплуатации АС в течение установленных гарантийных сроков, внесению необходимых изменений в документацию на АС.

8.2. Послегарантийное обслуживание:

  • анализ функционирования системы;
  • выявление отклонений фактических эксплуатационных характеристик АС от проектных значений;
  • установление причин этих отклонений;
  • устранение выявленных недостатков и обеспечение стабильности эксплуатационных характеристик АС;
  • внесение необходимых изменений в документацию на АС.

Светочувствительность фотоматериалов (плёнок и фотобумаг) и матриц цифровых фотоаппаратов определяется в соответствие со шкалой светочувствительности.

Ранее использовались стандарты светочувствительности, имевшие хождение в разных странах.

Например, ASA – American Standards Association; DIN – Deutsche Indastrienormen.

В последнее время производители договорились о единой системе определения светочувствительности.

В единой шкале светочувствительности используются значения ISO/ISO°

Сопоставление шкал светочувствительности произведено в таблице 1.

Шкалы светочувствительности ISO/ISO°, ASA, DIN, ГОСТ

Таблица 1

ISO °

ГОСТ новый

ГОСТ старый

Значение светочувствительности, представляемое в единицах ISO, состоит из двух чисел, разделяемых косой чертой.

Ряд первых чисел совпадает со шкалами светочувствительности нового ГОСТ и ASA, ряд вторых чисел (именуемых градусами ISO) совпадает со шкалой светочувствительности, выраженной в градусах DIN.

Производители фотокамер и экспонометров иногда ограничиваются только первыми числами светочувствительности ISO. Это связано с тем, что шкала единиц светочувствительности ISO представляет собой арифметическую прогрессию с модулем 1.26. Аналогично устроены ряды выдержек и диафрагм фотоаппарата.

Шкала светочувствительности, выраженная в градусах ISO, представляет собой логарифмическую шкалу с разностью в единицу.

Для практики достаточно запомнить, что изменение светочувствительности в два раза по ГОСТ, ISO, ASA соответствует изменению на три градуса DIN и ISO° см.Таблица 2

Наиболее распространённый ряд светочувствительности

Таблица 2

В практике цифровой фотографии минимальное значение чувствительности матрицы фотокамеры составляет 100 или 200 единиц ISO. Меньшие значения минимальной чувствительности достигаются, как правило, программными методами.

Высокая максимальная чувствительность матрицы используется далеко не всегда. Это обусловлено тем, что при увеличении чувствительности возрастают шумы матрицы и падает качество изображения.

Современные алгоритмы, заложенные в цифровые фотокамеры, позволяют использовать высокие значения чувствительности матрицы, но требуют предельно точного определение экспозиции и аккуратной постобработки.