Методические приемы планирования и построения эксперимента. Формальное планирование и оценка валидности как условия установления экспериментального эффекта. Обстановка анкетного опроса

Статистический подход, рассмотренный в предыдущем разделе, можно использовать в любом случае, когда требуется выяснить, отличается ли реально или, во всяком случае, статистически значимо некоторая полученная в эксперименте величина - среднее значение, коэффициент корреляции и т. п. от ее теоретического значения. Нас, скажем, может интересовать, достаточно ли отличается от 0,5 наблюдаемая частота рекомбинаций между двумя генетическими локусами в потомстве от возвратного скрещивания для того, чтобы можно было заключить, что данные локусы лежат в одной и той же хромосоме. Или, например, требуется выяснить, значимо ли статистически наблюдаемое различие между числом образующихся мужских и женских гамет. Далее, может возникнуть необходимость в определении частоты случаев выздоровления после какого-то заболевания - либо при испытании того или иного препарата, либо при сравнении эффективности двух препаратов. Замечательная особенность такого статистического анализа состоит в том, что все виды неизбежной естественной изменчивости, составляющей как бы «фон», на котором проявляется изменчивость, связанная с исследуемым фактором, учитываются в комплексе путем использования соответствующего распределения вероятностей.

Если фоновая изменчивость очень велика, то для получения окончательных результатов может потребоваться очень большое число наблюдений, а когда она сравнительно мала, результат будет получен значительно быстрее.

Если какой-либо эффект вызывается очень большим числом различных факторов, то вполне возможно, что фоновая изменчивость будет весьма велика. В таких случаях целесообразно попытаться выделить некоторые из этих факторов, даже если их невозможно полностью контролировать или исключить. Часто оказывается возможным разбить общую изменчивость на отдельные компоненты, из которых один соответствует исследуемому фактору, несколько других - другим воздействиям, допускающим возможность раздельной оценки, и последний - остальным воздействиям, раздельная оценка которых невозможна. Поскольку влияние последней группы факторов, безусловно, будет слабее, чем влияние исследуемого фактора, то это обеспечивает более точную статистическую проверку. Искусство располагать наблюдения в определенном порядке или проводить специально спланированные проверки с целью полного использования возможностей этих методов и составляет содержание предмета «планирование эксперимента». Детальное изложение существующих методов планирования эксперимента можно найти в литературе (см., например, ). В настоящем разделе мы осветим лишь некоторые основные преимущества сознательного и продуманного планирования эксперимента.

Допустим, например, что требуется сравнить болеутоляющее действие двух различных лекарственных препаратов А и В. Пусть подобрано 16 больных и принято решение разделить их случайным образом (во избежание какой-либо сознательно или непроизвольно вносимой систематической ошибки) на две группы, по 8 больных в каждой. Одна группа получает препарат А, а другая - препарат В. Затем измеряют время, в течение которого каждый из больных испытывает облегчение, и сравнивают средние значения по обеим группам. Если среднее время для препарата А значимо превышает среднее время для препарата В, то можно сделать вывод, что первый препарат более эффективен. (В данном случае несущественно, какой статистический критерий используется. Поскольку рассматривается небольшое число объектов, это может быть один из критериев Стьюдента.) Известно, что больные по-разному реагируют на один и тот же лекарственный препарат, поэтому продолжительность периода облегчения обычно сильно варьирует, что значительно понижает точность сравнения этих двух препаратов.

Однако в данном эксперименте различия между больными не представляют для нас особого интереса, и этот источник погрешности можно исключить следующим образом. Вместо того чтобы делить больных на две группы, проверяют на каждом из них оба препарата, назначая их последовательно через достаточно большие промежутки времени (чтобы избежать взаимодействия) и в случайном порядке (или, возможно, в одном порядке для одной половины больных и в другом порядке для другой). Теперь для каждого больного определяют относительное преимущество препарата А перед препаратом В, для чего вычисляют суммарную продолжительность периода облегчения для каждого из них и находят разность этих двух величин. Таким образом получают 16 чисел, характеризующих относительное преимущество одного препарата перед другим, что позволяет проверить, значимо ли отличается от нуля их среднее значение. Положительная разность свидетельствует о статистически значимом преимуществе препарата А, отрицательная - об обратном соотношении. Рассматривая показатели относительного преимущества, мы исключаем влияние реакции отдельных больных и в общем случае добиваемся более эффективного сравнения этих двух лекарств.

Такая простая проверка методом попарного сравнения представляет собой простейший план эксперимента, имеющий целью извлечь максимальное количество информации из данного числа наблюдений. Заметим, что этот план имеет и свои дополнительные особенности, так как требует особого внимания к ряду практических вопросов, например к тому, чтобы препараты назначались в случайном порядке (во избежание нежелательной систематической ошибки) и через достаточно большие промежутки времени (для исключения эффектов взаимодействия); однако здесь мы не можем детально рассматривать эти вопросы.

Мы показали, каким образом при проверке методом попарного сравнения можно контролировать или исключать из рассмотрения какой-либо один важный и явный источник изменчивости. В более общем случае могут быть спланированы факторные эксперименты, с помощью которых можно определить вклад каждого из нескольких факторов в общую изменчивость. Некоторые из этих факторов могут представлять особый интерес, тогда как другие имеют второстепенное значение. Идея и практическое применение этого нового подхода, принадлежащего главным образом Р. Фишеру, получили широкое распространение после появления его книги «Планирование экспериментов», вышедшей первым изданием в 1935 г. Большинство фундаментальных работ в области планирования эксперимента было посвящено сельскохозяйственным приложениям.

Допустим, требуется сравнить среднюю урожайность нескольких сортов пшеницы при применении различных удобрений в различной концентрации, учитывая при этом колебания в плодородии почвы на достаточно больших участках земли, которые можно разбить на делянки подходящих размеров. Для начала можно попытаться составить план эксперимента, в котором будут рассматриваться все возможные комбинации значений, или уровней, различных факторов. Так, если имеются четыре сорта пшеницы и три различных вида удобрений, применяемых в трех различных концентрациях, то общее число комбинаций условий будет равно 36. Таким образом, исходное число делянок в одном блоке факторного эксперимента будет равно 36 - по одной делянке на каждую комбинацию условий. Вследствие возможного колебания в плодородии почвы от одного блока к другому может оказаться целесообразным иметь не менее двух полных блоков.

Применение факторного плана вместо классической схемы, согласно которой каждый раз изменяется только один фактор, имеет ряд серьезных и даже несколько неожиданных преимуществ. Прежде всего в этом случае становится значительно более полной картина влияния каждого фактора, поскольку оно изучается в самых различных условиях (вследствие одновременного изменения других факторов). Во-вторых, большое число комбинаций факторов, используемых в эксперименте, облегчает предсказание результатов, которые могут быть достигнуты при определенной комбинации условий. В-третьих, если эффекты, вызываемые каждым фактором, включаемым в эксперимент, статистически независимы, то о каждом факторе можно получить не меньше информации, чем если бы в процессе эксперимента изменялся только один этот фактор, а остальные оставались постоянными. В-четвертых, если (как это часто бывает) различные факторы не являются независимыми, а вызывают эффекты, которые в большей или меньшей степени коррелированы, то в этом случае только факторный эксперимент может дать информацию о характере этих взаимодействий. При наличии нескольких взаимосвязанных существенных факторов обойтись без постановки факторного эксперимента невозможно. Для ряда часто встречающихся специальных задач разработано большое число стандартных планов такого типа.

Согласно некоторым из этих простейших планов, эксперимент проводят на нескольких блоках и внутри каждого из них на отдельных делянках проверяют влияние всех уровней какого-то одного фактора. При правильном планировании получают рандомизированный блочный план. В сельскохозяйственных задачах блоками могут служить участки земли на различных полях, а уровнями одного фактора - ступенчатая последовательность концентраций удобрений или просто различные сорта пшеницы.

В лабораторном эксперименте, в котором, скажем, проверяется влияние различных рационов питания на крыс, рационы питания будут испытываемыми условиями, а крысы - отдельными экспериментальными единицами (соответствующими делянкам в сельскохозяйственном эксперименте). Если бы мы могли использовать в эксперименте животных отдельных пометов, подвергая каждому воздействию по одному животному из каждого помета, то каждый помет можно было бы рассматривать как отдельный блок.

В рассмотренной выше простой проверке методом попарного сравнения также можно было бы применить рандомизированный блочный план; тогда каждого больного можно было бы рассматривать как отдельный блок, а лекарственные препараты - как условия эксперимента.

Хотя иногда бывает трудно перенести планы экспериментов, разработанные для одной области, особенно для сельского хозяйства, в совершенно другую область, лежащая в их основе логическая схема часто оказывается весьма сходной. Поэтому целесообразно тщательно обдумать возможность того, чтобы при надлежащей интерпретации элементов какого-либо определенного плана эксперимента можно было обеспечить его успешное применение в задачах совершенно иного характера. Это иллюстрирует большие возможности математических методов планирования эксперимента. В основе планирования должна, разумеется, лежать некоторая исходная математическая модель. Опишем самую простую из них, которая в том или ином варианте используется наиболее широко. Пусть требуется исследовать влияние только двух факторов А и В. Допустим, что наблюдаемое на некоторой экспериментальной единице влияние уровня фактора А и уровня фактора В можно записать в виде

где - наблюдаемая величина, - общее среднее, - относительные вклады этих двух факторов при заданных уровнях каждого из них, - случайное изменение, налагаемое на основную линейную аддитивную схему. Кроме того, часто принимается, что все величины имеют одно и то же нормальное распределение и независимы друг от друга. Эти ограничения весьма серьезны, однако часто принятие их в качестве первого приближения вполне оправданно. Так, если влияние этих факторов мало, то заметную величину будут иметь только линейные члены и возможными членами второго порядка можно пренебречь. При независимости факторов формула (2.4) вполне удовлетворительна. Но если они взаимодействуют друг с другом, то следует включить в нее дополнительные члены с, учитывающие это взаимодействие.

Можно, однако, выполнить проверку значимости на основе формулы (2.4), чтобы убедиться, нужны ли члены, характеризующие взаимодействие. Кроме того, если случайные величины не распределены по нормальному закону, то можно использовать какую-либо функцию эмпирических результатов (например, квадратные корни или логарифмы), для которой сохраняется нормальный закон распределения.

На основе элементарной формулы (2.4) легко построить модели, учитывающие множество факторов, блоков, взаимодействий и других усложнений, вызываемых практической необходимостью в каждом данном эксперименте. Дело в том, что в очень многих случаях необходимые вычисления относительно просты и выполняются непосредственно. Обычно приходится производить повторяющиеся вычисления сумм и сумм квадратов данных, выбранных соответствующим образом. Результаты представляют в виде таблицы дисперсионного анализа, с помощью которой можно установить значимость всех различных факторов, влияющих на результаты эксперимента.

Одним из современных вариантов планирования экспериментов, который следует рассмотреть особо, является последовательностная схема эксперимента. В эксперименте стандартного типа необходимо заранее решить, сколько наблюдений нужно набрать. Если после анализа обнаружится, что число наблюдений слишком мало, то нужно попытаться продолжить эксперимент, однако может оказаться, что на данном этапе сделать это трудно или невозможно. Если же выяснится, что получено значительно больше наблюдений, чем необходимо для достижения требуемой точности, то будут потеряны время и деньги. В медицинских задачах это имеет особенно существенное значение. Ни один врач не заинтересован в том, чтобы эксперимент длился дольше, чем это строго необходимо, так как его цель - дать своим больным наилучший из существующих препаратов, как только он пройдет клинические испытания. Таким образом, в медицине выбор и планирование эксперимента теснейшим образом связаны с этическими соображениями. Последовательностная схема предусматривает проведение эксперимента отдельными сериями. Оценка результатов производится на каждом этапе, с тем чтобы немедленно можно было решить, применять препарат А, препарат В или же продолжать эксперимент, поскольку окончательного вывода сделать еще нельзя. При такой схеме эксперимента длительность его будет минимальна и он закончится значительно раньше, чем в любом другом случае. Кроме того, в медицине часто бывает очень трудно или даже вообще невозможно провести обычную экспериментальную проверку, так как после нескольких неудачных исходов, которые могут закончиться смертью больного, начинаются острые споры о том, следует ли продолжать эксперимент вообще.

Последовательностная схема означает, что заранее можно тщательно и спокойно рассмотреть различные линии поведения, обусловливаемые различными исходами эксперимента. При этом значительно легче выбрать наилучшие решения непосредственно в ходе эксперимента и совместить требования этики со статистической эффективностью. Более детально методы последовательностного анализа в медицине рассмотрены в книге Эрмитажа .

Недостаток места не позволяет продолжать здесь изложение теории планирования эксперимента, тем более что этому предмету посвящена уже огромная литература г. Наша основная цель состояла в том, чтобы показать, каким образом с помощью простой математической модели процесса, на который одновременно воздействуют несколько факторов (носящих, возможно, в значительной мере вероятностный характер), можно с достаточной точностью выяснить степень влияния каждого из этих факторов в отдельности. Это позволяет применять для проверки значимости влияния крайне изменчивых и одновременно действующих факторов простые статистические критерии, описанные в разд. 2.2. А именно такой подход и необходим для исследования всего огромного многообразия явлений, встречающихся в биологии и медицине.


Краткое описание

Факторным называется такой план, согласно которому одновременно изучается влияние на зависимую переменную двух или более факторов. Т. к. несколько факторов рассматриваются в рамках одного плана, то в добавление к возможности оценить их воздействие на зависимую переменную по отдельности (главные эффекты) появляется возможность измерить эффекты их совместного влияния на эту переменную (взаимодействия).
Дробные 2**(k-p) факторные планы, вероятно, наиболее часто используемые планы в промышленных экспериментах. Предмет рассмотрения любого 2**(k-p) дробного факторного эксперимента включает число исследуемых факторов, число опытов в эксперименте и наличие блоков опытов эксперимента. После этих основных вопросов следует также определить, позволяет ли число опытов найти план требуемого разрешения и степень смешивания для критического порядка взаимодействий, для данного разрешения.

Введение
1 Простые факторные планы
2 Простые сравнивающие эксперименты
Вывод
Список использованных источников

Содержимое работы - 1 файл

Критерий минимальной аберрации плана. Критерий минимальной аберрации плана является другим необязательным критерием, используемым при поиске 2**(k-p) плана. В некоторых отношениях этот критерий похож на критерий максимальной несмешанности. Формально план с минимальной аберрацией определяется как план с максимальным разрешением "с минимальным числом слов в определяющем взаимоотношении, которое имеет минимальную длину" (Fries & Hunter, 1984). Менее формально, действие критерия основано на выборе генераторов, которые дают наименьшее число пар смешанных взаимодействий критического порядка. Например, план разрешения IV с минимальной аберрацией имел бы минимальное число пар смешанных 2-факторных взаимодействий.

Для пояснения различия между критериями максимальной несмешанности и минимальной аберрации рассмотрим максимально несмешанный план 2**(9-4) и план 2**(9-4) с минимальной аберрацией, как в примере, данном Box, Hunter, и Hunter (1978). Если вы сравните эти два плана, вы увидите, что в максимально несмешанном плане 15 из 36 2-факторных взаимодействий не смешаны с любыми другими 2-факторными взаимодействиями, в то время как в плане с минимальной аберрацией только 8 из 36 2-факторных взаимодействий не смешаны с любыми другими 2-факторными взаимодействиями. План с минимальной аберрацией, однако, дает 18 пар смешанных взаимодействий, в то время как максимально несмешанный план дает 21 пару смешанных взаимодействий. Таким образом, эти критерии приводят к выделению генераторов, дающих различные "лучшие" планы.

К счастью, выбор между критерием максимальной несмешанности и критерием минимальной аберрации не вносит различия в выбранном плане (за исключением, возможно, переобозначения факторов), когда имеется 11 или меньше факторов, - единственное исключение составляет план 2**(9-4), описанный выше (смотрите Chen, Sun, & Wu, 1993). Для планов с более чем 11 факторами оба критерия приводят к весьма различным планам, и нет лучшего совета, как использовать оба критерия, а затем сравнить полученные планы и выбрать план, наиболее отвечающий вашим потребностям. Добавим, что максимизация числа полностью несмешанных эффектов часто имеет больший смысл, чем минимизация числа пар смешанных эффектов.

2 Простые сравнивающие эксперименты

Эксперименты представляют собой запланированное введение фактора в ситуацию с целью установить его связь с изменением в данной ситуации. Вводимый фактор обычно называют вмешательством, воздействием и ли независимой переменной; тогда наблюдаемое изменение будет мерой зависимой переменной. Эксперименты включают подробное описание того, сколько (и каких) групп испытуемых должно быть создано и каким образом предполагается исключить наиболее правдоподобные альтернативные объяснения. Главные задачи сравнивающих экспериментов - связать вмешательство с эффектом и исключить все другие объяснения наблюдаемого изменения. Простейшие эксперименты заключаются в воздействии, оказываемом на одного испытуемого или группу испытуемых, вместе с наблюдениями до и после этого воздействия, проводимыми с целью установления изменение в их состоянии. Эксперименты используются не только для установления связи переменных с их эффектами, но и для исключения альтернативных объяснений, в которых, если употреблять терминологию теории планирования эксперимента, переменные смешиваются. Только когда мы разделяем эти эффекты, мы можем приписать наблюдаемое изменение определенному воздействию, например, цвету фона дисплея; в противном случае мы вынуждены прибегать к смешанному альтернативному объяснению, например, приписывая то же самое изменение влиянию практики. На языке теории планирования эксперимента мы бы сказали, что контролируем смешивание переменных. Как можно этого добиться? Существует четыре общепринятых метода контроля: а) исключение смешиваемого фактора; б) измерение эффекта смешиваемого фактора и введение соответствующей поправки; в) сравнение эквивалентных ситуаций, одна из которых подвергается влиянию смешиваемой переменной и экспериментальному воздействию, тогда как на другую влияет только смешиваемая переменная ; г) варьирование эксперимента воздействия при поддержании смешиваемой переменной на одном уровне, чтобы посмотреть, соответствует ли изменение эффекта схеме изменения воздействия. Несмотря на то, что существуют и др. методы контроля, чаще всего используются именно эти четыре. Базисная логика экспериментальных планов. 1. Стабилизировать ситуацию, ввести воздействие и наблюдать изменение. 2. Если ситуация не может быть стабилизирована и изменяется, то проследить характер изменений, ввести воздействие и установить, привело ли оно к каким-либо нарушениям в характере изменений. 3. Стабилизировать две (или более) эквивалентные ситуации; выбрать одну из них и поддерживать ее постоянство на одном уровне с оставшейся (или оставшимися), за исключением эксперимента воздействия; ввести экспериментальное воздействие в другую ситуацию (или его варианты в оставшиеся ситуации) и отметить различия. 4. Соотнести схему подачи/прекращения эксперимента воздействия с характером наблюдаемого изменения; если можно измерить степень воздействия или силу вмешательства, то соотнести силу или интенсивность вмешательств а с таким релевантным аспектом как величина или предел изменения. (Этот принцип работает только в том случае, если зависимая переменная возвращается в прежнее состояние при прекращении вмешательства, но не действует в таких ситуациях как ситуация научения, эффекты которого отличаются устойчивостью .) Случайное распределение испытуемых на эксперименте и контрольную группы гарантирует, что эти группы, в среднем, "совместно уравниваются по каждому условию", включительно и предположительно связанные с изучаемым явлением , и непредвиденные, даже иррелевантные условия, такие как число кожных пор и длина ногтей. Действительно, Кэмпбелл и Стэнли считают случайное распределение испытуемых по группам довольно важным вследствие того, что оно обеспечивает защиту от "скрытых" переменных, и называют планы, в которых оно не используется, "квазиэкспериментальными", в отличие от использующих его "подлинно экспериментальных планов". Такие факторы как уровень образования, способность к научению, мотивация и социоэкономический статус , часто оказываются альтернативными объяснениями, которые хотели бы исключить посредством обеспечения эквивалентности групп. Это достигается путем стратификации, формирования блоков или попарного уравнивания на основе измерения этих переменных с последующим случайным распределением испытуемых по экспериментам и контрольным группам. Логика сохранения общности всех условий за исключением одного используется и в более сложных планах, таких, например, как факторные. Такие планы позволяют одновременно проверять эффект нескольких переменных, но в них всегда есть одна или более групп, которые отличаются от другой или других групп испытуемых только одним условием или переменной. Милль отмечал, что когда одно явление изменяется по мере изменения другого, то либо одно из них является причиной, а другое следствием (или наоборот), либо оба они связаны с общей причиной. Этой логике следуют такие планы как план с разрывом регрессии (служащим признаком экспериментального эффекта) и план типа АБА/АБАБ, а также корреляционные исследования, цель которых - выяснить насколько тесно величина одной переменной связана с величиной другой переменной. Сделать вывод о причинности на основе корреляции весьма затруднительно, так как ковариация может быть обусловлена действием третьей переменной.

Вывод

Экспериментальные методы широко используются как в науке, так и в промышленности, однако нередко с весьма различными целями. Обычно основная цель научного исследования состоит в том, чтобы показать статистическую значимость эффекта воздействия определенного фактора на изучаемую зависимую переменную.

В условиях промышленного эксперимента основная цель обычно заключается в извлечении максимального количества объективной информации о влиянии изучаемых факторов на производственный процесс с помощью наименьшего числа дорогостоящих наблюдений. Если в научных приложениях методы дисперсионного анализа используются для выяснения реальной природы взаимодействий, проявляющейся во взаимодействии факторов высших порядков, то в промышленности учет эффектов взаимодействия факторов часто считается излишним в ходе выявления существенно влияющих факторов.

Основные принципы планирования эксперимента, обеспечивающие получение максимума информации при минимуме опытов. Отказ от полного перебора возможных входных состояний. Выбор числа уровней варьирования по каждому фактору на основании вида аппроксимации функции отклика. Принцип последовательного планирования, предусматривающий получение простейшей математической модели на основании небольшого числа опытов и, если полученная модель не удовлетворяет исследователя, постепенное усложнение математической модели на основе проведения новых (дополнительных) опытов до тех пор, пока не будет получена модель, которую исследователь признает достаточно хорошей.

Список использованных источников

  1. Encyclopedia of Computer Science. 4th edition. 2000. Grove"s Dictionaries N.Y.
  2. Белоцерковский О.М. 1994. Численное моделирование в механике сплошных сред. М.: Наука
  3. Петров А. А. 1996. Экономика. Модели. Вычислительный эксперимент. М.: Наука
  4. Самарский А.А., Михайлов А.П.. 1997. Математическое моделирование. Идеи. Методы. Примеры. - М., Наука.
  5. Буянов Б. Б., Легович Ю. С., Лубков Н. В., Поляк Г.Л. 1996. Построение систем подготовки управляющих решений с использованием имитационного моделирования Приборы и системы управления. 12: 36 - 40.
  6. Бахур А.Б. 2000. Системные идеи в современной инженерной практике. М.: Пров-пресс.
  7. Попов Ю. П., Самарский А.А. 1983. Вычислительный эксперимент. М. Знание.
  8. Трахтенгерц Э. Л. 1998. Компьютерная поддержка принятия решений. М., Синтэг.
  9. Мандель А.С. 1996. Экспертно-статистические системы в задачах управления и обработки информации. Часть I. Приборы и системы управления. 12: 34-36.

Планирование эксперимента

Учебное пособие

Воронеж 2013

ФГБОУВПО «Воронежский государственный технический университет»

Планирование эксперимента

Утверждено Редакционно-издательским советом университета в качестве учебного пособия

Воронеж 2013

УДК: 629.7.02

Попов эксперимента: учеб. пособие. Воронеж: ФГБОУВПО «Воронежский государственный технический университет», 20с.

В учебном пособии рассматривается вопрос планирования эксперимента. Издание соответствует требованиям Государственного образовательного стандарта высшего профессионального образования по направлению 652100 «Авиастроение», специальности 160201 «Самолето - и вертолетостроение », дисциплине «Планирование экспериментов и обработка результатов».

Учебное пособие разработано в рамках реализации федеральной целевой программы «Научные и научно-педагогические кадры инновационной России» на 2009 – 2013 годы, соглашение № 14.B37.21.1824, связанной с выполнением научно-исследовательской работы (проекта) по теме «Исследование, разработка конструкции неразрезных эллиптических обтекателей воздухозаборников двигателей летательных аппаратов и моделирование технологического процесса»

Табл. 3. Ил. 8. Библиогр.: 4 назв.

Научный редактор канд. техн. наук, доц.

Рецензенты: филиал «Иркут»» в г. Воронеже (зам. руководителя, канд. техн. наук, с. н.с.);

Канд. техн. наук

© Оформление. ФГБОУВПО «Воронежский государственный технический Университет», 2013

Введение

Традиционные методы исследований связаны с экспериментами, которые требуют больших затрат, сил и средств.


Эксперименты, как правило, являются многофакторными и связаны с оптимизацией качества материалов, отысканием оптимальных условий проведения технологических процессов, разработкой наиболее рациональных конструкций оборудования и т. д. Системы, которые служат объектом таких исследований, очень часто являются такими сложными, что не поддаются теоретическому изучению в разумные сроки. Поэтому, несмотря на значительный объем выполненных научно-исследовательских работ, из-за отсутствия реальной возможности достаточно полно изучить значительное число объектов исследования, как следствие, многие решения принимаются на основании информации, имеющей случайный характер, и поэтому далеки от оптимальных.

Исходя из выше изложенного возникает необходимость поиска пути, позволяющего вести исследовательскую работу ускоренными темпами и обеспечивающим принятие решений, близких к оптимальным. Этим путем и явились статистические методы планирования эксперимента, предложенные английским статистиком Рональдом Фишером (конец двадцатых годов). Он впервые показал целесообразность одновременного варьирования всеми факторами в противовес широко распространенному однофакторному эксперименту .

Применение планирования эксперимента делает поведение экспериментатора целенаправленным и организованным, существенно способствует повышению производительности труда и надежности полученных результатов. Важным достоинством является его универсальность, пригодность в огромном большинстве областей исследований. В нашей стране планирование эксперимента развивается с 1960 г. под руководством. Однако даже простая процедура планирования весьма непроста, что обусловлено рядом причин, таких как неверное применение методов планирования, выбор не самого оптимального пути исследования, недостаточность практического опыта, недостаточная математическая подготовленность экспериментатора и т. д.

Цель данного учебного пособия – ознакомление студентов с наиболее часто применяемыми и простыми методами планирования эксперимента, выработка навыков практического применения. Более подробно рассмотрена задача оптимизации процессов.

1 Основные понятия планирования эксперимента

Планирование эксперимента, имеет свою определенную терминологию. Рассмотрим общие термины.

Эксперимент - это система операций, воздействий и (или) наблюдений, направленных на получение информации об объекте при исследовательских испытаниях.

Опыт - воспроизведение исследуемого явления в определенных условиях проведения эксперимента при возможности регистрации его результатов. Опыт - отдельная элементарная часть эксперимента.

Планирование эксперимента - процедура выбора числа опытов и условий их проведения, необходимых для решения поставленной задачи с требуемой точностью. Все факторы, определяющие процесс, изменяются одновременно по специальным правилам, а результаты эксперимента представляются в виде математической модели.

Задачи, для решения которых может использоваться планирование эксперимента, чрезвычайно разнообразны. К ним относятся: поиск оптимальных условий, построение интерполяционных формул, выбор существенных факторов, оценка и уточнение констант теоретических моделей, выбор наиболее приемлемых из некоторого множества гипотез о механизме явлений, исследование диаграмм состав – свойство и т. д.

Поиск оптимальных условий является одной из наиболее распространенных научно-технических задач. Они возникают в тот момент, когда установлена возможность проведения процесса и необходимо найти наилучшие (оптимальные) условия его реализации. Такие задачи называются – задачами оптимизации. Процесс их решения называется – процессом оптимизации или просто оптимизацией. Примеры задачи оптимизации – выбор оптимального состава многокомпонентных смесей и сплавов, повышение производительности действующих установок, повышение качества продукции, снижение затрат на ее получение и т. п.


Выделяют следующие этапы построения математической модели

1. сбор и анализ априорной информации;

2. выбор факторов и выходных переменных, области экспериментирования;

3. выбор математической модели, с помощью которой будут представляться экспериментальные данные;

5. определение метода анализа данных;

6. проведение эксперимента;

7. проверка статистических предпосылок для полученных экспериментальных данных;

8. обработка результатов;

Факторы определяют состояние объекта. Основное требование к факторам - управляемость. Под управляемостью понимается установление нужного значения фактора (уровня) и поддержание его в течение всего опыта. В этом состоит особенность активного эксперимента. Факторы могут быть количественными и качественными. Примерами количественных факторов являются температура, давление, концентрация и т. п. Их уровням соответствует числовая шкала. Различные катализаторы, конструкции аппаратов, способы лечения, методики преподавания являются примерами качественных факторов. Уровням таких факторов не соответствует числовая шкала, и их порядок не играет роли.

Выходные переменные - это реакции (отклики) на воздействие факторов. Отклик зависит от специфики исследования и может быть экономическим (прибыль, рентабельность), технологическим (выход, надежность), психологическим, статистическим и т. д. Параметр оптимизации должен быть эффективным с точки зрения достижения цели, универсальным, количественным, выражаемым числом, имеющим физический смысл, быть простым и легко вычисляемым.

Затраты машинного времени можно значительно сократить, если на этапе оптимизации параметров использовать экспериментальную факторную математическую модель. Экспериментальные факторные модели, в отличие от теоретических, не используют физических законов, описывающих происходящие в объектах процессы, а представляют собой некоторые формальные зависимости выходных параметров от внутренних и внешних параметров объектов проектирования.

Экспериментальная факторная модель может быть построена на основе проведения экспериментов непосредственно на самом техническом объекте (физические эксперименты), либо вычислительных экспериментов на ЭВМ с теоретической моделью.

Рисунок 1

При построении экспериментальной факторной модели объект моделирования (проектируемая техническая система) представляется в виде "черного ящика", на вход которого подаются некоторые переменные Xи Z, а на выходе можно наблюдать и регистрировать переменные Y.

В процессе проведения эксперимента изменение переменных Xи Zприводит к изменениям выходных переменных Y. Для построения факторной модели необходимо регистрировать эти изменения и осуществить необходимую их статистическую обработку для определения параметров модели.

При проведении физического эксперимента переменными Xможно управлять, изменяя их величину по заданному закону. Переменные Z- неуправляемые, принимающие случайные значения. При этом значения переменных Xи Zможно контролировать и регистрировать с помощью соответствующих измерительных приборов. Кроме того, на объект воздействуют некоторые переменные Е, которые нельзя наблюдать и контролировать. Переменные X= (x1, х2,..., хn) называют контролируемыми управляемыми; переменные Z = (z1, z2,…… zm) - контролируемыми, но неуправляемыми, а переменные E = (ε1, ε2,..., εl) - неконтролируемыми и неуправляемыми.

Переменные X и Z называют факторами. Факторы X являются управляемыми и изменяются как детерминированные переменные, а факторы Z неуправляемые, изменяемые во времени случайным образом, т. е. Z представляют собой случайные процессы. Пространство контролируемых переменных - факторов X и Z - образует факторное пространство.

Выходная переменная Y представляет собой вектор зависимых переменных моделируемого объекта. Ее называют откликом, а зависимость Y от факторов Xи Z- функцией отклика. Геометрическое представление функции отклика называют поверхностью отклика.

Переменная Е действует в процессе эксперимента бесконтрольно. Если предположить, что факторы X и Z стабилизированы во времени и сохраняют постоянные значения, то под влиянием переменных E функция отклика Y может меняться как систематическим, так и случайным образом. В первом случае говорят о систематической помехе, а во втором - о случайной помехе. При этом полагают, что случайная помеха обладает вероятностными свойствами, не изменяемыми во времени.

Возникновение помех обусловлено ошибками методик проведения физических экспериментов, ошибками измерительных приборов, неконтролируемыми изменениями параметров ихарактеристик объекта и внешней среды.

В вычислительных экспериментах объектом исследования является теоретическая математическая модель, на основе которой необходимо получить экспериментальную факторную модель. Для ее получения необходимо определить структуру и численные значения параметров модели.

Под структурой модели понимается вид математических соотношений между факторами X, Z и откликом Y. Параметры представляют собой коэффициенты уравнений факторной модели. Структуру модели обычно выбирают на основе априорной информации об объекте с учетом назначения и последующего использования модели. Задача определения параметров модели полностью формализована. Она решается методами регрессионного анализа. Экспериментальные факторные модели называют также регрессионными моделями.

Регрессионную модель можно представить выражением

(1.1)

где В - вектор параметров факторной модели.

Вид вектор-функции φ определяется выбранной структурой модели и считается заданным, а параметры В подлежат определению на основе результатов эксперимента.

Различают эксперименты пассивные и активные.

Пассивным называется такой эксперимент, когда значениями факторов управлять нельзя, и они принимают случайные значения. В таком эксперименте существуют только факторы Z. В процессе эксперимента в определенные моменты времени измеряются значения факторов Z и функций откликов Y. После проведения N опытов полученная информация обрабатывается статистическими методами, позволяющими определить параметры факторной модели. Такой подход к построению математической модели лежит в основе метода статистических испытаний (Монте-Карло).

Активным называется такой эксперимент, когда значениями факторов задаются и поддерживают их неизменными в заданных уровнях в каждом опыте в соответствии с планом эксперимента. Следовательно, в этом случае существуют только управляемые факторы X.

Основные особенности экспериментальных факторных моделей следующие: они статистические; представляют собой сравнительно простые функциональные зависимости между оценками математических ожиданий выходных параметров объекта от eё внутренних и внешних параметров; дают адекватное описание установленных зависимостей лишь в области факторного пространства, в которой реализован эксперимент. Статистически регрессионная модель описывает поведение объекта в среднем, характеризуя его неслучайные свойства, которые в полной мере проявляются лишь при многократном повторении опытов в неизменных условиях.

2 Основные принципы планирования эксперимента

Для получения адекватной математической модели необходимо обеспечить выполнение определенных условий проведения эксперимента. Модель называют адекватной, если в оговоренной области варьирования факторов X полученные с помощью модели значения функций отклика Y отличаются от истинных не более чем на заданную величину. Методы построения экспериментальных факторных моделей рассматриваются в теории планирования эксперимента.

Цель планирования эксперимента - получение максимума информации о свойствах исследуемого объекта при минимуме опытов. Такой подход обусловлен высокой стоимостью экспериментов, как физических, так и вычислительных, и вместе с тем необходимостью построения адекватной модели.

При планировании активных экспериментов используются следующие принципы:

– отказ от полного перебора всех возможных состояний объекта;

– постепенное усложнение структуры математической модели;

– сопоставление результатов эксперимента с величиной случайных помех;

– рандомизация опытов;

Детальное представление о свойствах поверхности отклика может быть получено лишь при условии использования густой дискретной сетки значений факторов, покрывающей все факторное пространство. В узлах этой многомерной сетки находятся точки плана, в которых проводятся опыты. Выбор структуры факторной модели основан на постулировании определенной степени гладкости поверхности отклика. Поэтому с целью уменьшения количества опытов принимают небольшое число точек плана, для которых осуществляется реализация эксперимента.

При большом уровне случайной помехи получается большой разброс значений функции отклика Yв опытах, проведенных в одной и той же точке плана. В этом случае оказывается, что чем выше уровень помехи, тем с большей вероятностью простая модель окажется работоспособной. Чем меньше уровень помехи, тем точнее должна быть факторная модель.

Кроме случайной помехи при проведении эксперимента может иметь место систематическая помеха. Наличие этой помехи практически никак не обнаруживается и результат ее воздействия на функцию не поддается контролю. Однако если путем соответствующей организации проведения опытов искусственно создать случайную ситуацию, то систематическую помеху можно перевести в разряд случайных. Такой принцип организации эксперимента называют рандомизациейсистематически действующих помех.

Наличие помех приводит к ошибкам эксперимента. Ошибки подразделяют на систематические и случайные, соответственно наименованиям вызывающих их факторов - помех.

Рандомизацию опытов осуществляют только в физических экспериментах. Следует отметить, что в этих экспериментах систематическую ошибку может порождать наряду с отмеченными ранее факторами также неточное задание значений управляемых факторов, обусловленное некачественной калибровкой приборов для их измерения (инструментальная ошибка), конструктивными или технологическими факторами.

К факторам в активном эксперименте предъявляются определенные требования. Они должны быть:

– управляемыми(установка заданных значений и поддержание постоянными в процессе опыта);

– совместными(их взаимное влияние не должно нарушать процесс функционирования объекта);

–независимыми(уровень любого фактора должен устанавливаться независимо от уровней остальных);

– однозначными(одни факторы не должны быть функцией других);

– непосредственно влияющими на выходные параметры.

Выбор параметров оптимизации (критериев оптимизации) является одним из главных этапов работы на стадии предварительного изучения объекта исследования, т. к. правильная постановка задачи зависит от правильности выбора параметра оптимизации, являющегося функцией цели.

Под параметром оптимизации понимают характеристику цели, заданную количественно. Параметр оптимизации является реакцией (откликом) на воздействие факторов, которые определяют поведение выбранной системы.

Реальные объекты или процессы, как правило, очень сложны. Они часто требуют одновременного учета нескольких, иногда очень многих, параметров. Каждый объект может характеризоваться всей совокупностью параметров, или любым подмножеством этой совокупности, или одним – единственным параметром оптимизации. В последнем случае прочие характеристики процесса уже не выступают в качестве параметра оптимизации, а служат ограничениями. Другой путь – построение обобщенного параметра оптимизации как некоторой функции от множества исходных.

Параметр оптимизации (Функции отклика) – это признак, по которому оптимизируется процесс. Он должен быть количественным, задаваться числом. Множество значений, которые может принимать параметр оптимизации, называется областью его определения. Области определения могут быть непрерывными и дискретными, ограниченными и неограниченными. Например, выход реакции – это параметр оптимизации с непрерывной ограниченной областью определения. Он может изменяться в интервале от 0 до 100%. Число бракованных изделий, число зерен на шлифе сплава, число кровяных телец в пробе крови – вот примеры параметров с дискретной областью определения, ограниченной снизу.

Количественная оценка параметра оптимизации на практике не всегда возможна. В таких случаях пользуются приемом, называемым ранжированием. При этом параметрам оптимизации присваиваются оценки – ранги по заранее выбранной шкале: двухбалльной, пятибалльной и т. д. Ранговый параметр имеет дискретную ограниченную область определения. В простейшем случае область содержит два значения (да, нет; хорошо, плохо). Это может соответствовать, например, годной продукции и браку.

2.1 Виды параметров оптимизации

В зависимости от объекта и цели параметры оптимизации могут быть весьма разнообразными. Введем некоторую классификацию . Реальные ситуации, как правило довольно сложны. Они часто требуют нескольких, иногда очень многих, параметров. В принципе каждый объект может характеризоваться сразу всей совокупностью параметров, приведенных на рисунке 2, или любым подмножеством из этой совокупности. Движение к оптимуму возможно, если выбран один-единственный параметр оптимизации. Тогда прочие характеристики процесса уже не выступают в качестве параметров оптимизации, а служат ограничениями. Другой путь - построение обобщенного параметра оптимизации как некоторой функции от множества исходных .

Прокомментируем некоторые элементы схемы.

Экономические параметры оптимизации, такие, как прибыль, себестоимость и рентабельность, обычно используются при исследовании действующих промышленных объектов, тогда как затраты на эксперимент имеет смысл оценивать в любых исследованиях, в том числе и лабораторных. Если цена опытов одинакова, затраты на эксперимент пропорциональны числу опытов, которые необходимо поставить для решения данной задачи. Это в значительной мере определяет выбор плана эксперимента.

Среди технико-экономических параметров наибольшее распространение имеет производительность. Такие параметры, как долговечность, надежность и стабильность, связаны с длительными наблюдениями. Имеется некоторый опыт их использования при изучении дорогостоящих ответственных объектов, например радиоэлектронной аппаратуры.

Почти во всех исследованиях приходится учитывать количество и качество получаемого продукта. Как меру количества продукта используют выход, например, процент выхода химической реакции, выход годных изделий.

Показатели качества чрезвычайно разнообразны. В схеме они сгруппированы по видам свойств. Характеристики количества и качества продукта образуют группу технико-технологических параметров.

Под рубрикой «прочие» сгруппированы различные параметры, которые реже встречаются, но не являются менее важными. Сюда попали статистические параметры, используемые для улучшения характеристик случайных величин или случайных функций. В качестве примеров назовем задачи на минимизацию дисперсии случайной величины, на уменьшение числа выбросов случайного процесса за фиксированный уровень и т. д. Последняя задача возникает, в частности, при выборе оптимальных настроек автоматических регуляторов или при улучшении свойств нитей (проволока, пряжа, искусственное волокно и др.).

2.2 Требования к параметрам оптимизации

1) параметр оптимизации должен быть количественным.

2) параметр оптимизации должен выражаться одним числом. Иногда это получается естественно, как регистрация показания прибора. Например, скорость движения машины определяется числом на спидометре. Часто приходится проводить некоторые вычисления. Так бывает при расчете выхода реакции. В химии часто требуется получать продукт с заданным отношением компонентов, например, А:В=3:2. Один из возможных вариантов решения подобных задач состоит в том, чтобы выразить отношение одним числом (1,5) и в качестве параметра оптимизации пользоваться значением отклонений (или квадратов отклонений) от этого числа.

3) однозначность в статистическом смысле. Заданному набору значений факторов должно соответствовать одно значение параметра оптимизации, при этом обратное неверно: одному и тому же значению параметра могут соответствовать разные наборы значений факторов.

4) наиболее важным требованием к параметрам оптимизации является его возможность действительно эффективной оценки функционирования системы. Представление об объекте не остается постоянным в ходе исследования. Оно меняется по мере накопления информации и в зависимости от достигнутых результатов. Это приводит к последовательному подходу при выборе параметра оптимизации. Так, например, на первых стадиях исследования технологических процессов в качестве параметра оптимизации часто используется выход продукта. Однако в дальнейшем, когда возможность повышения выхода исчерпан, начинают интересоваться такими параметрами, как себестоимость, чистота продукта и т. д. Оценка эффективности функционирования системы может осуществляться как для всей системы в целом, так и оценкой эффективности ряда подсистем, составляющих данную систему. Но при этом необходимо учитывать возможность того, что оптимальность каждой из подсистем по своему параметру оптимизации «не исключает возможность гибели системы в целом». Это означает, что попытка добиться оптимума с учетом некоторого локального или промежуточного параметра оптимизации может оказаться неэффективной или даже привести к браку.

5) требование универсальности или полноты. Под универсальностью параметра оптимизации понимают его способность всесторонне охарактеризовать объект. В частности, технологические параметры недостаточно универсальны: они не учитывают экономику. Универсальностью обладают, например, обобщенные параметры оптимизации, которые строятся как функции от нескольких частных параметров.

6) параметр оптимизации желательно должен иметь физический смысл, быть простым и легко вычисляем. Требование физического смысла связано с последующей интерпретацией результатов эксперимента. Не представляет труда объяснить, что значит максимум извлечения, максимум содержания ценного компонента. Эти и подобные им технологические параметры оптимизации имеют ясный физический смысл, но иногда для них может не выполняться, например, требование статистической эффективности. Тогда рекомендуется переходить к преобразованию параметра оптимизации. Второе требование, т. е. простота и легко вычисляемость, также весьма существенны. Для процессов разделения термодинамические параметры оптимизации более универсальны. Однако на практике ими пользуются мало: их расчет довольно труден. Из приведенных двух требований первое является более существенным, потому что часто удается найти идеальную характеристику системы и сравнить ее с реальной характеристикой.

2.3Факторы

После выбора объекта исследования и параметра оптимизации нужно рассмотреть все факторы, которые могут влиять на процесс. Если какой-либо существенный фактор окажется неучтенным и принимал произвольные значения, не контролируемые экспериментатором, то это значительно увеличит ошибку опыта. При поддержании этого фактора на определенном уровне может быть получено ложное представление об оптимуме, т. к. нет гарантии, что полученный уровень является оптимальным.

С другой стороны большое число факторов увеличивает число опытов и размерность факторного пространства.

Выбор факторов эксперимента является весьма существенным, от этого зависит успех оптимизации.

Фактор – измеряемая переменная величина, принимающая в некоторый момент времени определенное значение и влияющая на объект исследования.

Факторы должны иметь область определения, внутри которой задаются его конкретные значения. Область определения может быть непрерывной или дискретной. При планировании эксперимента значения факторов принимаются дискретными, что связано с уровнями факторов. В практических задачах области определения факторов имеют ограничения, которые носят либо принципиальный, либо технический характер.

Факторы разделяются на количественные и качественные.

К количественным относятся те факторы, которые можно измерять, взвешивать и т. д.

Качественные факторы – это различные вещества, технологические способы, приборы, исполнители и т. п.

Хотя к качественным факторам не соответствует числовая шкала, но при планировании эксперимента к ним применяют условную порядковую шкалу в соответствии с уровнями, т. е. производится кодирование. Порядок уровней здесь произволен, но после кодирования он фиксируется.

2.3.1 Требования к факторам эксперимента

1) Факторы должны быть управляемыми, это значит, что выбранное нужное значение фактора можно поддерживать постоянным в течение всего опыта. Планировать эксперимент можно только в том случае, если уровни факторов подчиняются воле экспериментатора. Например, экспериментальная установка смонтирована на открытой площадке. Здесь температурой воздуха мы не можем управлять, ее можно только контролировать, и потому при выполнении опытов температуру, как фактор, мы не можем учитывать.

2) Чтобы точно определить фактор, нужно указать последовательность действий (операций), с помощью которых устанавливаются его конкретные значения. Такое определение называется операциональным. Так, если фактором является давление в некотором аппарате, то совершенно необходимо указать, в какой точке и с помощью какого прибора оно измеряется и как оно устанавливается. Введение операционального определения обеспечивает однозначное понимание фактора.

3) Точность замеров факторов должна быть возможно более высокой. Степень точности определяется диапазоном изменения факторов. В длительных процессах, измеряемых многими часами, минуты можно не учитывать, а в быстрых процессах приходится учитывать доли секунды.

Исследование существенно усложняется, если фактор измеряется с большой ошибкой или значения факторов трудно поддерживать на выбранном уровне (уровень фактора «плывет»), то приходится применять специальные методы исследования, например, конфлюэнтный анализ .

4) Факторы должны быть однозначны. Трудно управлять фактором, который является функцией других факторов. Но в планировании могут участвовать другие факторы, такие, как соотношения между компонентами, их логарифмы и т. п. Необходимость введения сложных факторов возникает при желании представить динамические особенности объекта в статической форме. Например, требуется найти оптимальный режим подъема температуры в реакторе. Если относительно температуры известно, что она должна нарастать линейно, то в качестве фактора вместо функции (в данном случае линейной) можно использовать тангенс угла наклона, т. е. градиент.

5) При планировании эксперимента одновременно изменяют несколько факторов, поэтому необходимо знать требования к совокупности факторов. Прежде всего выдвигается требование совместимости. Совместимость факторов означает, что все их комбинации осуществимы и безопасны. Несовместимость факторов наблюдается на границах областей их определения. Избавиться от нее можно сокращением областей. Положение усложняется, если несовместимость проявляется внутри областей определения. Одно из возможных решений – разбиение на подобласти и решение двух отдельных задач.

6) При планировании эксперимента важна независимость факторов, т. е. возможность установления фактора на любом уровне вне зависимости от уровней других факторов. Если это условие невыполнимо, то невозможно планировать эксперимент.

2.3.2 Требования к совокупности факторов

При планировании эксперимента обычно одновременно изменяется несколько факторов. Поэтому очень важно сформулировать требования, которые предъявляются к совокупности факторов. Прежде всего выдвигается требование совместимости. Совместимость факторов означает, что все их комбинации осуществимы и безопасны. Это очень важное требование. Представьте себе, что вы поступили легкомысленно, не обратили внимания на требование совместимости факторов и запланировали такие условия опыта, которые могут привести к взрыву установки или осмолению продукта. Согласитесь, что такой результат очень далек от целей оптимизации.

Несовместимость факторов может наблюдаться на границах областей их определения. Избавиться от нее можно сокращением областей. Положение усложняется, если несовместимость проявляется внутри областей определения. Одно из возможных решений - разбиение на подобласти и решение двух отдельных задач.

При планировании эксперимента важна независимость факторов, т. е. возможность установления фактора на любом уровне вне зависимости от уровней других факторов. Если это условие невыполнимо, то невозможно планировать эксперимент. Итак, мы подошли ко второму требованию - отсутствию корреляции между факторами. Требование некоррелированности не означает, что между значениями факторов нет никакой связи. Достаточно, чтобы связь не была линейной.

3 Планирование эксперимента

3.1 План эксперимента

При проведении активного эксперимента задается определенный план варьирования факторов, т. е. эксперимент заранее планируется

План эксперимента - совокупность данных, определяющих число, условия и порядок реализации опытов.

Планирование эксперимента - выбор плана эксперимента, удовлетворяющего заданным требованиям.

Точка плана - упорядоченная совокупность численных значений факторов, соответствующая условиям проведения опыта, т. е. точка факторного пространства, в которой проводится эксперимент. Точке плана с номером i соответствует вектор-строка (3.1):

(3.1)

Общая совокупность таких векторов Xi, i= 1, Lобразует план эксперимента, а совокупность различных векторов, число которых обозначим N, - спектр плана.

В активном эксперименте факторы могут принимать только фиксированные значения. Фиксированное значение фактора называют уровнем фактора. Количество принимаемых уровней факторов зависит от выбранной структуры факторной модели и принятого плана эксперимента. Минимальный Xjmin и максимальный Хimах, j=l, n (n - число факторов) уровни всех факторов выделяют в факторном пространстве некоторый гиперпараллелепипед, представляющий собой область планирования. В области планирования находятся все возможные значения факторов, используемые в эксперименте.

Вектор задает точку центра областипланирования. Координаты этой точки Xj0 обычно выбирают из соотношения (3.2)

(3.2)

Точку Х0называют центром эксперимента. Она определяет основной уровень факторов Хj0, j = 1,n. Центр эксперимента стремятся выбрать как можно ближе к точке, которая соответствует искомым оптимальным значениям факторов. Для этого используется априорная информация об объекте.

Интервалом (или шагом) варьирования фактора Xj называют величину, вычисляемую по формулам (3.3, 3.4):

(3.3)

Факторы нормируют, а их уровни кодируют. В кодированном виде верхний уровень обозначают +1, нижний -1, а основной 0. Нормирование факторов осуществляют на основе соотношения (3.5, 3.6):

xj =(Xj-X0j)/ΔXj, (3.5)

Рисунок 3 – Геометрическое представление области планирования при двух факторах: Х1 и Х2

Точки 1,2,3,4 являются точкамиплана эксперимента. Например, значения факторов Х1и Х2в точке 1равны соответственно X1min иХ2min, а нормированные их значения xlmin = -1, х2min = -1.

После установления нулевой точки выбирают интервалы варьирования факторов. Это связано с определением таких значений факторов, которые в кодированных величинах соответствуют +1 и –1. Интервалы варьирования выбирают с учетом того, что значения факторов, соответствующие уровням +1 и –1, должны быть достаточно отличимы от значения, соответствующему нулевому уровню. Поэтому во всех случаях величина интервала варьирования должна быть больше удвоенной квадратичной ошибки фиксирования данного фактора. С другой стороны, чрезмерное увеличение величины интервалов варьирования нежелательно, т. к. это может привести к снижению эффективности поиска оптимума. А очень малый интервал варьирования уменьшает область эксперимента, что замедляет поиск оптимума.

При выборе интервала варьирования целесообразно учитывать, если это возможно, число уровней варьирования факторов в области эксперимента. От числа уровней зависят объем эксперимента и эффективность оптимизации.

План эксперимента удобно представлять в матричной форме.

Матрица планапредставляет собой прямоугольную таблицу, содержащую информацию о количестве и условиях проведения опытов. Строки матрицы плана соответствуют опытам, а столбцы - факторам. Размерность матрицы плана L х n, где L- число опытов, n- число факторов. При проведении повторных (дублирующих) опытов в одних и тех же точках плана матрица плана содержит ряд совпадающих строк.

Экспериментом в широком смысле мы называем эмпирическое исследование, организация и проведение которого осуществляется по заранее составленному плану. Отклонение от схемы исследования, предусмотренной планом, могут увести далеко в сторону от решения поставленной задачи.

Грамотно составленный план обеспечивает оптимальные значения показателей валидности, по которым оценивают «качество» проведенного исследования, прежде всего достоверность полученных результатов.

Поэтому, планированию эксперимента в психологии уделяется особое внимание. Планирование эксперимента можно разделить на два этапа - содержательный и формальный:

  • 1) исходя из решаемой проблемы определяется ряд теоретических и экспериментальных положений, которые образуют теоретическую основу исследования (теоретическое обеспечение);
  • 2) формируются теоретические и экспериментальные гипотезы исследования;
  • 3) выбирается необходимый метод эксперимента - полевой, «тренажер», лабораторный;
  • 4) решается вопрос выборки испытуемых;
  • а) состав выборки (гендерный, возрастной, социальный, профессиональный и т.д.);
  • б) объем выборки;
  • в) способ формирования (рандомизированный, попарный, необходимость контрольной группы и т.д.)
  • 2. Задачи формального планирования:
  • 1) достичь возможности сравнения результатов;
  • 2) добиться возможности обсуждения полученных данных;
  • 3) обеспечить экономическое проведение исследования.

Если это не учитывать, то в дальнейшем не возможно будет сравнивать полученные результаты и однозначно их интерпретировать. Эти требования вытекают из особенностей экспериментальных методов вообще и психологически в частности.

Главная цель формального планирования - исключить по возможности максимальное число причин искажения результатов и тем самым минимизировать область ошибок, связанных с данным исследованием.

Необходимым условием успешного формального планирования является предварительный анализ всех возможных факторов экспериментальной ситуации, который начинается еще на этапе содержательного планирования.

Основные вопросы, на которые отвечает экспериментальный план, следующие:

  • 1) Одна или несколько независимых переменных используются в эксперименте;
  • 2) Изменяется ли независимая переменная по величине или остается постоянной;
  • 3) Какие методы контроля требует и допускает экспериментальная ситуация (методы контроля - методы устранения, фиксации или контролирования состояния нерелевантных стимулов);

В методологии экспериментального исследования известны простые и комплексные планы. Все простые планы изучение влияния на процесс одной единственной переменной. Комплексные планы составляются для случая воздействия нескольких переменных.

В подготовке и в планировании эксперимента большую помощь могут оказать пилотажные (предварительные) исследования.

На многие вопросы организации эксперимента нельзя найти ответ ни в литературе, ни в собственном жизненном опыте, ни в соответствующей теории. Только непосредственное пилотажное исследование может показать, например, оптимальные диапазоны необходимых изменений стимулов, степень утомляемости испытуемого в подготовляемом эксперименте, наличие тех или иных нерелевантных стимулов и пр.

Кроме того, в пилотажных исследованиях проверяются составленные экспериментальные планы. Как правело, при этом обнаруживается много поводов для их коррекции.

Не стоит жалеть времени и усилий на составление, проверку и коррекцию экспериментальных планов, потому что в процессе непосредственного проведения эксперимента импровизированные отклонения от установленного плана не приветствуются. Иначе это будет уже совсем другое исследование.(6 стр. 80)

Создание модели - акт необходимый при анализе и синтезе сложных систем, но далеко не конечный. Модель - не цель исследователя, а только инструмент для проведения исследований, инструмент эксперимента. В первых темах мы достаточно полно раскрыли афоризм: "Модель есть объект и средство эксперимента".

Эксперимент должен быть информативен, то есть давать всю нужную информацию, которой следует быть полной, точной, достоверной. Но она должна быть получена приемлемым способом. Это означает, что способ должен удовлетворять экономическим, временным и, возможно, другим ограничениям. Такое противоречие разрешается с помощью рационального (оптимального) планирования эксперимента.

Теория планирования эксперимента сложилась в шестидесятые годы двадцатого века благодаря работам выдающегося английского математика , биолога, статистика Рональда Айлмера Фишера (1890-1962 гг.). Одно из первых отечественных изданий: Федоров В. В. Теория оптимального эксперимента. 1971 г. Несколько позже сложилась теория и практика планирования имитационных экспериментов, элементы которых рассматриваются в настоящей теме.

4.1. Сущность и цели планирования эксперимента

Итак, как мы уже знаем, модель создается для проведения на ней экспериментов. Будем считать, что эксперимент состоит из наблюдений , а каждое наблюдение - из прогонов (реализаций ) модели .

Для организации экспериментов наиболее важно следующее.

Компьютерный эксперимент с имитационной моделью обладает преимуществами перед натурным экспериментом по всем этим позициям.

Что же такое компьютерный (машинный) эксперимент?

Компьютерный эксперимент представляет собой процесс использования модели с целью получения и анализа интересующей исследователя информации о свойствах моделируемой системы.

Эксперимент требует затрат труда и времени и, следовательно, финансовых затрат. Чем больше мы хотим получить информации от эксперимента, тем он дороже.

Средством достижения приемлемого компромисса между максимумом информации и минимумом затрат ресурсов является план эксперимента.

План эксперимента определяет:

  • объем вычислений на компьютере;
  • порядок проведения вычислений на компьютере;
  • способы накопления и статистической обработки результатов моделирования.

Планирование экспериментов имеет следующие цели:

  • сокращение общего времени моделирования при соблюдении требований к точности и достоверности результатов;
  • увеличение информативности каждого наблюдения;
  • создание структурной основы процесса исследования.

Таким образом, план эксперимента на компьютере представляет собой метод получения с помощью эксперимента необходимой информации.

Конечно, можно проводить исследования и по такому плану: исследовать модель во всех возможных режимах, при всех возможных сочетаниях внешних и внутренних параметров , повторять каждый эксперимент десятки тысяч раз - чем больше, тем точнее!

Очевидно, пользы от такой организации эксперимента мало, полученные данные трудно обозреть и проанализировать. Кроме того, большими будут затраты ресурсов, а они всегда ограничены.

Весь комплекс действий по планированию эксперимента разделяют на две самостоятельные функциональные части:

  • стратегическое планирование;
  • тактическое планирование.

Стратегическое планирование - разработка условий проведения эксперимента, определение режимов, обеспечивающих наибольшую информативность эксперимента.

Тактическое планирование обеспечивает достижение заданных точности и достоверности результатов.

4.2. Элементы стратегического планирования экспериментов

Формирование стратегического плана выполняется в так называемом факторном пространстве . Факторное пространство - это множество внешних и внутренних параметров , значения которых исследователь может контролировать в ходе подготовки и проведения эксперимента.

Объектами стратегического планирования являются:

  • выходные переменные (отклики, реакции, экзогенные переменные );
  • входные переменные (факторы, эндогенные переменные );
  • уровни факторов.

Математические методы планирования экспериментов основаны на так называемом кибернетическом представлении процесса проведения эксперимента (рис. 4.1).


Рис. 4.1.

- входные переменные, факторы;

- выходная переменная ( реакция , отклик);

Ошибка, помеха, вызываемая наличием случайных факторов;

Оператор, моделирующий действие реальной системы, определяющий зависимость выходной переменной от факторов

Иначе: - модель процесса, протекающего в системе.

Первой проблемой , решаемой при стратегическом планировании, является выбор отклика (реакции), то есть определение , какие величины нужно измерять во время эксперимента, чтобы получить искомые ответы. Естественно, выбор отклика зависит от цели исследования.

Например, при моделировании информационно-поисковой системы может интересовать исследователя время ответа системы на запрос . Но может интересовать такой показатель как максимальное число обслуженных запросов за интервал времени. А может, то и другое. Измеряемых откликов может быть много: В дальнейшем будем говорить об одном отклике

Второй проблемой стратегического планирования является выбор ( определение ) существенных факторов и их сочетаний, влияющих на работу моделируемого объекта. Факторами могут быть питающие напряжения, температура, влажность, ритмичность поставок комплектующих и многое другое. Обычно число факторов велико и чем меньше мы знакомы с моделируемой системой, тем большее, нам кажется, число их влияет на работу системы. В теории систем приводится так называемый принцип Парето:

  • 20% факторов определяют 80% свойств системы;
  • 80% факторов определяют 20% свойств системы. Следовательно, надо уметь выделять существенные факторы. А

это достигается достаточно глубоким изучением моделируемого объекта и протекающих в нем процессов.

Факторы могут быть количественными и (или) качественными.

Количественные факторы - это те, значения которых числа. Например, интенсивности входных потоков и потоков обслуживания, емкость буфера, число каналов в СМО, доля брака при изготовлении деталей и др.

Качественные факторы - дисциплины обслуживания ( LIFO , FIFO и др.) в СМО, "белая сборка ", "желтая сборка " радиоэлектронной аппаратуры, квалификация персонала и т. п.

Фактор должен быть управляемым. Управляемость фактора - это возможность установки и поддержания значения фактора постоянным или изменяющимся в соответствии с планом эксперимента. Возможны и неуправляемые факторы, например, влияние внешней среды.

К совокупности воздействующих факторов предъявляются два основных требования:

  • совместимость;
  • независимость.

Совместимость факторов означает, что все комбинации значений факторов осуществимы.

Независимость факторов определяет возможность установления значения фактора на любом уровне независимо от уровней других факторов.

В стратегических планах факторы обозначают латинской буквой , где индекс указывает номер (тип) фактора. Встречаются и такие обозначения факторов: и т. д.

Третьей проблемой стратегического планирования является выбор значений каждого фактора, называемых уровнями фактора .

Число уровней может быть два, три и более. Например, если в качестве одного из факторов выступает температура, то уровнями могут быть: 80 o С, 100 o С, 120 o С.

Для удобства и, следовательно, удешевления эксперимента число уровней следует выбирать поменьше, но достаточное для удовлетворения точности и достоверности эксперимента. Минимальное число уровней - два.

С точки зрения удобства планирования эксперимента целесообразно устанавливать одинаковое число уровней у всех факторов. Такое планирование называют симметричным .

Анализ данных эксперимента существенно упрощается, если назначить уровни факторов, равноотстоящие друг от друга. Такой план называется ортогональным . Ортогональность плана обычно достигают так: две крайние точки области изменения фактора выбирают как два уровня, а остальные уровни располагают так, чтобы они делили полученный отрезок на две части.

Например, диапазон питающего напряжения 30…50 В на пять уровней будет разбит так: 30 В, 35 В, 40 В, 45 В, 50 В.

Эксперимент, в котором реализуются все сочетания уровней всех факторов, называется полным факторным экспериментом (ПФЭ).

План ПФЭ предельно информативен, но он может потребовать неприемлемых затрат ресурсов.

Если отвлечься от компьютерной реализации плана эксперимента, то число измерений откликов (реакций) модели при ПФЭ равно:

где - число уровней -го фактора, ; - число факторов эксперимента.