Учебное пособие: Планирование эксперимента. Примеры экспериментальных планов Математическое планирование эксперимента пример

Лекция 1. Вводная. Основные понятия и определения

Под экспериментом будем понимать совокупность операций совершаемых над объектом исследования с целью получения информации о его свойствах. Эксперимент, в котором исследователь по своему усмотрению может изменять условия его проведения, называется активным экспериментом. Если исследователь не может самостоятельно изменять условия его проведения, а лишь регистрирует их, то это пассивный эксперимент.

Важнейшей задачей методов обработки полученной в ходе эксперимента информации является задача построения математической модели изучаемого явления, процесса, объекта. Ее можно использовать и при анализе процессов и при проектировании объектов. Можно получить хорошо аппроксимирующую математическую модель, если целенаправленно применяется активный эксперимент. Другой задачей обработки полученной в ходе эксперимента информации является задача оптимизации, т.е. нахождения такой комбинации влияющих независимых переменных, при которой выбранный показатель оптимальности принимает экстремальное значение.

Опыт – это отдельная экспериментальная часть.

План эксперимента – совокупность данных определяющих число, условия и порядок проведения опытов.

Планирование эксперимента – выбор плана эксперимента, удовлетворяющего заданным требованиям, совокупность действий направленных на разработку стратегии экспериментирования (от получения априорной информации до получения работоспособной математической модели или определения оптимальных условий). Это целенаправленное управление экспериментом, реализуемое в условиях неполного знания механизма изучаемого явления.

В процессе измерений, последующей обработки данных, а также формализации результатов в виде математической модели, возникают погрешности и теряется часть информации, содержащейся в исходных данных. Применение методов планирования эксперимента позволяет определить погрешность математической модели и судить о ее адекватности. Если точность модели оказывается недостаточной, то применение методов планирования эксперимента позволяет модернизировать математическую модель с проведением дополнительных опытов без потери предыдущей информации и с минимальными затратами.

Цель планирования эксперимента – нахождение таких условий и правил проведения опытов при которых удается получить надежную и достоверную информацию об объекте с наименьшей затратой труда, а также представить эту информацию в компактной и удобной форме с количественной оценкой точности.

Пусть интересующее нас свойство (Y) объекта зависит от нескольких (n) независимых переменных (Х1, Х2, …, Хn) и мы хотим выяснить характер этой зависимости - Y=F(Х1, Х2, …, Хn), о которой мы имеем лишь общее представление. Величина Y – называется “отклик”, а сама зависимость Y=F(Х1,Х2, …, Хn) – “функция отклика”.

Отклик должен быть определен количественно. Однако могут встречаться и качественные признаки Y. В этом случае возможно применение рангового подхода. Пример рангового подхода - оценка на экзамене, когда одним числом оценивается сложный комплекс полученных сведений о знаниях студента.

Независимые переменные Х1, Х2, …, Хn – иначе факторы, также должны иметь количественную оценку. Если используются качественные факторы, то каждому их уровню должно быть присвоено какое-либо число. Важно выбирать в качестве факторов лишь независимые переменные, т.е. только те которые можно изменять, не затрагивая другие факторы. Факторы должны быть однозначными. Для построения эффективной математической модели целесообразно провести предварительный анализ значимости факторов (степени влияния на функцию), их ранжирование и исключить малозначащие факторы.

Диапазоны изменения факторов задают область определения Y. Если принять, что каждому фактору соответствует координатная ось, то полученное пространство называется факторным пространством. При n=2 область определения Y представляется собой прямоугольник, при n=3 – куб, при n >3 - гиперкуб.

При выборе диапазонов изменения факторов нужно учитывать их совместимость, т.е. контролировать, чтобы в этих диапазонах любые сочетания факторов были бы реализуемы в опытах и не приводили бы к абсурду. Для каждого из факторов указывают граничные значения

, i=1,... n.

Регрессионный анализ функции отклика предназначен для получения ее математической модели в виде уравнения регрессии

,

где В1, …, Вm – некоторые коэффициенты; е – погрешность.

Среди основных методов планирования, применяемых на разных этапах исследования, используют:

планирование отсеивающего эксперимента, основное значение которого выделение из всей совокупности факторов группы существенных факторов, подлежащих дальнейшему детальному изучению;

планирование эксперимента для дисперсионного анализа, т.е. составление планов для объектов с качественными факторами;

планирование регрессионного эксперимента, позволяющего получать регрессионные модели (полиномиальные и иные);

планирование экстремального эксперимента, в котором главная задача – экспериментальная оптимизация объекта исследования;

планирование при изучении динамических процессов и т.д.

Инициатором применения планирования эксперимента является Рональд А. Фишер, другой автор известных первых работ – Френк Йетс. Далее идеи планирования эксперимента формировались в трудах Дж. Бокса, Дж. Кифера. В нашей стране - в трудах Г.К. Круга, Е.В. Маркова и др.

В настоящее время методы планирования эксперимента заложены в специализированных пакетах, широко представленных на рынке программных продуктов, например: StatGrapfics, Statistica, SPSS, SYSTAT и др.

Представление результатов экспериментов

При использовании методов планирования эксперимента необходимо найти ответы на 4 вопроса:

Какие сочетания факторов и сколько таких сочетаний необходимо взять для определения функции отклика?

Как найти коэффициенты В0, В1, …, Bm?

Как оценить точность представления функции отклика?

Как использовать полученное представление для поиска оптимальных значений Y?

Геометрическое представление функции отклика в факторном пространстве Х1, Х2, …, Хn называется поверхностью отклика (рис. 1).


Рис. 1. Поверхность отклика

Если исследуется влияние на Y лишь одного фактора Х1, то нахождение функции отклика - достаточно простая задача. Задавшись несколькими значениями этого фактора, в результате опытов получаем соответствующие значения Y и график Y =F(X) (рис. 2).

Рис. 2. Построение функции отклика одной переменной по опытным данным

По его виду можно подобрать математическое выражение функции отклика. Если мы не уверены, что опыты хорошо воспроизводятся, то обычно опыты повторяют несколько раз и получают зависимость с учетом разброса опытных данных.

Если факторов два, то необходимо провести опыты при разных соотношениях этих факторов. Полученную функцию отклика в 3х-мерном пространстве (рис. 1) можно анализировать, проводя ряд сечений с фиксированными значениями одного из факторов (рис. 3). Вычлененные графики сечений можно аппроксимировать совокупностью математических выражений.


Рис. 3. Сечения поверхности отклика при фиксированных откликах (а) и переменных (б,в).

При трех и более факторах задача становится практически неразрешимой. Если и будут найдены решения, то использовать совокупность выражений достаточно трудно, а часто и не реально.

Например, пусть необходимо исследовать влияние U, f и Rr на Мп и P2 асинхронного двигателя (АД) (рис. 4).

Рис. 4. Исследование влияния U, f и Rr на Мп и P2 АД

Если в диапазоне изменения каждого фактора взять хотя бы по пять точек

то для того чтобы выполнить опыты при всех возможных сочетаниях значений факторов (их три) необходимо выполнить 53=125 опытов и сформировать по 52=25 кривых для каждой из двух функций отклика. Если мы хотим хотя бы продублировать опыты чтобы снизить погрешность, то число опытов пропорционально возрастает, поэтому произвольное выполнение опытов при числе факторов более двух и использование их результатов - практически нереально.


Лекция 2. Разложение функции отклика в степенной ряд, кодирование факторов

Если заранее не известно аналитическое выражение функции отклика, то можно рассматривать не саму функцию, а ее разложение, например в степенной ряд в виде полинома

Y=В0 + B1Х1 + … + BnХn + В12Х1Х2 + … Вnn-1ХnХn-1 + В11Х12 + … + ВnnXn2 +….

Разложение в степенной ряд функции возможно в том случае, если сама функция является непрерывной и гладкой. На практике обычно ограничиваются числом членов степенного ряда и аппроксимируют функцию полиномом некоторой степени.

Факторы могут иметь разные размерности (А, В, Вт, об/мин) и резко отличаться количественно. В теории планирования эксперимента используют кодирование факторов.

Рис. 5. Пространство кодированных факторов

Эта операция заключается в выборе нового масштаба для кодированных факторов (рис. 5), причем такого, чтобы минимальное значение кодированных факторов соответствовало “-1”, а максимальное значение “+1”, а также в переносе начала координат в точку с координатами Х1ср, Х2ср, …, Хnср

.

Выше всех умозрительных знаний и искусств стоит умение производить опыты, и эта наука есть царица наук.

Р. Бэкон

Планирование эксперимента - это процесс выбора условий, процедуры и методов проведения опытов, их числа и условий, необходимых и достаточных для решения поставленной задачи с требуемой точностью.

Требования к планированию эксперимента:

  • 1) число опытов должно быть минимальным, чтобы не усложнять процедуру эксперимента и не увеличивать его стоимость, но не в ущерб точности результата;
  • 2) необходимо определить совокупность факторов, влияющих на результаты эксперимента, ранжировать их, выявить главные, а несущественные переменные можно исключить;
  • 3) условием корректности эксперимента следует считать одновременное варьирование всеми переменными (факторами), оказывающими взаимное влияние на исследуемый процесс;
  • 4) ряд действий в эксперименте может быть заменен их моделями (прежде всего математическими), при этом адекватность моделей должна быть проверена и оценена;
  • 5) необходимо разработать стратегию эксперимента и алгоритм се реализации: серии эксперимента должны анализироваться после завершения каждой из них перед переходом к последующей серии.

План проведения эксперимента должен включать следующие разделы:

  • 1. Наименование темы исследования.
  • 2. Цель и задачи эксперимента.
  • 3. Условия проведения эксперимента: параметр оптимизации и варьируемые факторы.
  • 4. Методика проведения исследования.
  • 5. Обоснование количества опытов (объема эксперимента).
  • 6. Средства и методика проведения измерений.
  • 7. Материальное обеспечение эксперимента (перечень оборудования).
  • 8. Методика обработки и анализа экспериментальных данных.
  • 9. Календарный план проведения испытаний, в котором указываются сроки их выполнения, исполнители, представляемые данные эксперимента.
  • 10. Смета расходов.

Цель и задачи эксперимента - исходный пункт плана. Они формулируются на основе анализа научной гипотезы, теоретических результатов собственного исследования либо исследований других авторов.

Цель определяет конечный результат эксперимента, т. е. то, что исследователь должен получить в итоге. Например, подтвердить правильные научные гипотезы; проверить на практике адекватность, работоспособность и практическую пригодность моделей, методик; определить оптимальные условия технологического процесса и т. п.

В различных условиях цели требуют разных затрат, средств и методов измерения, времени эксперимента, отражаются на методике его проведения. Эти пункты плана будут различными, например, в условия лабораторного, полевого и производственного экспериментов.

Задачи эксперимента определяют частные цели, с помощью которых может быть достигнута конечная цель либо пути ее достижения. Например, определение оптимальных показателей температуры и давления при изготовлении фулиреновых нанотрубок; установление оптимального соотношения исходных материалов; обоснование скорости протекания технологического процесса и др.

Частными задачами эксперимента при его планировании могут быть:

  • - проверка теоретических положений с целью подтверждения их истинности;
  • - проверка (уточнение) констант математических либо иных моделей;
  • - поиск оптимальных (допустимых) условий какого-либо процесса;
  • - построение интерполяционных аналитических зависимостей.

Частные задачи эксперимента могут иметь несколько уровней, т. е. древовидную форму. Рекомендуется формулировать 2-4 сложные задачи и 10-15 более простых задач.

Формулирование условий проведении эксперимента - параметра оптимизации и варьируемых факторов.

Величина, описывающая результат проведенного эксперимента, называется параметром оптимизации (откликом) системы на воздействие. Множество значений, которые принимает параметр оптимизации, называется областью его определения.

Параметр оптимизации должен быть количественным, задаваться числом и быть измеримым при любом фиксированном наборе уровней факторов. Он обязан характеризоваться однозначно, т. е. заданному набору уровней факторов должно соответствовать, с точностью ошибки эксперимента, одно значение параметра оптимизации. Параметр оптимизации должен всесторонне характеризовать объект исследования, удовлетворять требованию универсальности и полноты. Он должен иметь физический смысл, чтобы обеспечить последующую интерпретацию результатов эксперимента, быть простым и легко вычисляемым.

Параметр оптимизации (отклик) зависит от факторов, влияющих на эксперимент. Фактор (лат .factor - производящий) - причина какого-либо процесса, явления, определяющая его влияние на объект исследования, его характер или отдельные черты. Это измеряемая величина, и каждое значение, которое может принимать фактор, называется уровнем фактора.

Каждый фактор в эксперименте может принимать одно из нескольких значений. Фиксированный набор уровней нескольких факторов будет определять какие-то конкретные условия проведения эксперимента. Изменение хотя бы одного из факторов приводит к изменению и условий, и, как следствие, к изменению значения параметра оптимизации.

Варьируемые факторы в многофакторном эксперименте определяют цели и условия исследования. Например, факторами в эксперименте по поиску оптимальных условий при производстве наноматериалов могут быть: температура, время воздействия, количество окисла и т. п.

Большое количество факторов делает эксперимент очень сложным и требует довольно много времени. Поэтому весьма важным при планировании эксперимента является сокращение числа факторов и выбор наиболее существенных. При этом можно руководствоваться принципом Парето, в соответствии с которым 20 % факторов определяют 80 % свойств системы.

Значимость факторов может быть определена опытным или аналитическим путем. В первом случае - проводится ограниченный эксперимент. При этом один фактор изменяется, а остальные нет, и т. д. Ранжирование «значимых» факторов осуществляется по силе их влияния на результат эксперимента. Те факторы, изменение которых сильнее отражается на конечном результате, считаются более важными. «Несущественными» факторами можно пренебречь.

Если факторов много, этот путь неэффективен, тогда используется аналитический путь, основанный на методах факторного анализа.

Если факторы зависимы, их можно рассчитать с помощью метода топологической декомпозиции и структуры по их влиянию на конечную цель. Задача определения рангов факторов заключается в выделении наиболее связной части графа. Она решается поэтапно.

Сначала определяются «достижимые множества» для каждой вершины графа (для каждого фактора). Затем определяются «контрдостижимые множества», каждое из которых включает все вершины, имеющие путь в вершину. В завершении определяют наиболее существенные вершины графа, составляющие сильно связанный граф. Самые существенные факторы оставляют, остальные отбрасывают.

Важнейшим требованием эксперимента является управляемость факторов, а экспериментатор должен иметь возможность выбрать нужное значение фактора и поддерживать его постоянным на протяжении всего эксперимента. Фактор также должен быть операциональным, чтобы его можно было указать последовательностью операций, необходимых для задания того или иного значения.

Формализуя условия проведения эксперимента, важно также определиться с областью его проведения. Для этого необходимо оценить границы областей определения факторов. Здесь возможны ограничения нескольких типов: которые не могут быть нарушены ни при каких условиях (например, температура нс может оказаться ниже абсолютного нуля); техникоэкономические ограничения (например, стоимость оборудования или продолжительность исследуемого процесса); конкретные условия процесса.

Под моделью эксперимента обычно понимают модель черного ящика, в которой используется функция отклика, устанавливающая зависимость между параметром оптимизации и факторами: у = f(x y X 2 > ...,Jc n).

Выбрать модель - значит выбрать вид этой функции и записать ее уравнение. Тогда останется только провести эксперимент по вычислению численных коэффициентов данной модели. Главное требование к модели эксперимента - способность предсказывать дальнейшее направление опытов с требуемой точностью. Среди всех возможных адекватных моделей необходимо выбирать ту, которая представляется наиболее простой.

Наиболее часто в планировании эксперимента выбирают полиномиальные модели первой (линейный) или второй степени:

Методика проведения эксперимента - ключевая часть плана эксперимента. Она включает:

  • - последовательность действий исследователя;
  • - основные приемы и правила осуществления каждого этапа, использование приборов и оборудования;
  • - порядок измерения, фиксации результатов и методы их обработки;
  • - порядок анализа результатов эксперимента и формулирования выводов.

При разработке методики важно правильно обосновать количество опытов,

которое гарантирует требуемую точность результата, а с другой стороны - не ведет к неоправда!тому перерасходу средств и времени на избыточные испытания.

При более чем десяти испытаниях обоснование количества опытов может быть осуществлено на основе неравенства Чебышева:

где X - среднее значение случайно измеряемой величины; М{х) - математическое ожидание величины; е - требуемая точность результата; D(x) - дисперсия величины х, рассчитанная по результатам N проведенных опытов.

Неравенство можно сформулировать следующим образом: «вероятность того, что разность между математическим ожиданием и среднестатистическим значением случайной величины X не превысит требуемую точность результата - е, равна разности между единицей и отношением D(x): Ne 2 ».

В неравенстве три неизвестных: N и статистические характеристики, зависящие от N. Поэтому процесс расчета N является итеративным.

Если неравенство выполняется, то количество опытов достаточно. В противном случае количество опытов увеличивается.

Достаточное количество наблюдений (опытов) может быть определено при помощи таблицы достаточно больших чисел (табл. 8.1). Она показывает, что достаточное количество наблюдений зависит от степени уверенности в результатах эксперимента (доверительной вероятности), величины допустимой ошибки (доверительного интервала). Иными словами, степень уверенности определяется величиной вероятности, с которой делается соответствующее заключение .

Относительно выбора величины вероятности Р нет какого-либо общего решения, одинакового при всех исследованиях. Чем ближе к единице будет величина рассматриваемой вероятности, тем надежнее будет заключение. В практике научных исследований доверительная вероятность обычно принимается Р = 0,9-0,99. Требуемая точность при исследованиях устанавливается в зависимости от природы изучаемого явления. В большинстве случаев требуемая точность принимается равной е = 0,01-0,05.

Например, если величина доверительной вероятности принята равной Р = 0,95, а допустимая ошибка равна е = 0,05, то достаточное число наблюдений в ходе эксперимента будет равно 384.

Другой важной составляющей плана эксперимента является обоснование средств и методики измерений. Она предполагает выбор измерительных приборов, аппаратуры и оборудования, позволяет фиксировать данные эксперимента; преобразовывать их к удобному виду; хранить, обеспечивать выдачу по запросам и т. п.

Система измерений должна формироваться с учетом требований метрологии науки о методах и средствах измерений, выборе единиц, шкал и систем измерений; проблемах точности измерений. Методы измерений, которые могут быть применены в различных экспериментах, рассмотрены в предыдущей главе.

Эти методы измерения могут быть сведены в две группы: прямых (искомая величина измеряется непосредственно в ходе эксперимента) и косвенных измерений (искомая величина, полученная на основе результатов прямых измерений). Кроме того, по признаку единиц измерений различают абсолютные измерения, проводимые в единицах исследуемой величины, и относигельные измерения, предполагающие фиксацию отношения измеряемой величины к ее некоторому предельному значению.

Рассмотренные основы организации и проведения эксперимента носят лишь обзорный характер, а сущность, содержание, условия применения вышеизложенных рекомендаций и последовательность использования того или иного метода проведения эксперимента требуют более детального изучения. Кроме того, следует четко понимать, что каждый метод проведения эксперимента будет иметь и свои особенности в зависимости от объекта исследования.

При проведении научных экспериментов и технологических расчетов наряду с субстанционным (изготовление физического образца материала) и структурно-имитационным (имитация взаимодействия структурных элементов системы) моделированием широко применяется функциональное моделирование, результатом которого является получение некой математической функции, описывающей поведение объекта исследования, абстрагируясь от внутренней структуры вещественного субстрата. Функциональная модель работает по принципу «черного ящика», при этом известны параметры «входа» – переменные или постоянные факторы, а также, параметры «выхода» – критерий эффективности, отклик и т.д. . К примеру, построение функциональных моделей эксперимен-тальных зависимостей свойств бетона от его состава включает в себя следующие этапы:

  • уточнение в зависимости от конкретной задачи оптимизируемых параметров (прочности бетона, удобоукладываемости бетонной смеси и др.);
  • выбор факторов, определяющих изменчивость оптимизируемых параметров; ‒ определение основного исходного состава бетонной смеси; ‒ выбор интервалов варьирования факторов;
  • выбор плана и условий проведения эксперимента;
  • обработка результатов эксперимента с построением математических моделей зависимостей свойств бетонной смеси и бетона от выбранных факторов.

Планирование эксперимента – это процедура выбора числа и условий проведения опытов, необходимых и достаточных для решения поставленной задачи с требуемой точностью.

Рассмотрим процесс математического планирования и обработки данных факторного эксперимента с применением программно-алгоритмических средств на примере компьютерной программы «PlanExp B-D13» , разработанной в среде программирования Microsoft Visual Basic 6.0. Разработанный программный продукт позволяет производить моментальный расчет плана эксперимента по заданным переменным факторам, рассчитывать коэффициенты уравнения математической модели, проводить статистическую оценку адекватности математической модели, строить диаграммы линий равного уровня с возможностью обнаружения точки экстремума, а также, автоматически формировать отчет по итогам эксперимента. Программа ориентирована на работу с трехфакторным планом эксперимента B-D13, который позволяет получать нелинейные квадратичные модели, и обладает хорошими статистическими характеристиками.

Алгоритм программы включает основные процедуры – процедуру расчета коэффициентов функции отклика, процедуру статистической обработки и процедуру визуализации математической модели. Все основные вычисления производятся циклично, что позволяет моментально перестраивать математическую модель, изменяя входные данные. Кроме того, алгоритм включает вспомогательную процедуру, обеспечивающую проверку синтаксической правильности вводимых данных. При допущении ошибок ввода данных программа корректирует действия пользователя средствами текстового оповещения.

Интерфейс программного продукта реализован в виде логических блоков, позволяющих вводить исходные данные и изменять параметры вывода математической модели в интерактивном режиме (рисунок 1).

Рисунок 1 – Интерфейс программы обработки данных трехфакторных планированных экспериментов

Опишем порядок работы с программой на примере планированного эксперимента по исследованию зависимости прочности бетона от рецептурных факторов.

В первом логическом блоке устанавливаются входные факторы эксперимента. В эксперименте варьируются: количество вяжущей части бетона; содержание наполнителя и количество добавки – гиперпластификатора. Значения факторов задаются в натуральном виде (граммы, проценты и т.д.). Пользователь заполняет текстовые поля – основной уровень факторов, интервал варьирования и наименование фактора (рисунок 2).

Рисунок 2 – Блок ввода значений входных факторов

В расчете факторного плана значения уровней входных факторов принимаются в кодированном виде, при этом, основной уровень (центр плана) каждого фактора обозначается как «0», а нижний и верхний уровни: «–1» и «+1» соответственно. Пересчет заданных пользователем натуральных значений факторов производится путем линейной интерполяции значений:



где x i – значение i -го фактора в кодированном виде, X i – значение i -го фактора в натуральном виде, ΔX i – интервал варьирования i -го фактора.

В текущем примере в эксперименте контролируется величина предела прочности бетона на сжатие (R сж , МПа). Для определения воспроизводимости измерений выходного параметра необходимо проводить параллельные измерения. В программе допускается ввод выходных значений до трех параллельных замеров. Согласно плану эксперимента рассчитывается 10 опытов по 3 параллельных испытания в каждом. Выходные параметры, наименование выходного параметра и количество параллельных замеров устанавливаются пользователем во втором блоке (рисунок 3).

Рисунок 3 – Блок расчета плана эксперимента и ввода значений выходных параметров

После автоматической проверки введенных данных программа рассчитывает коэффициенты математической модели и выводит функцию отклика в третьем логическом блоке (рисунок 4).

Рисунок 4 – Блок вывода математической модели

После получения математической модели производится проверка значимости (отличия от нуля) коэффициентов модели и ее адекватность.

Адекватность (от лат. adaequatus – приравненный, равный) – соответствие, верность, точность. Точность измерения – характеристика измерения, отражающая степень близости его результатов к истинному значению измеряемой величины .

Проверка коэффициентов на значимость производится с помощью критерия Стьюдента (t-критерия), который рассчитывается по формуле:


где b i – i -й коэффициент математической модели, S {b i } – среднеквадратическое отклонение в определении коэффициентов.

Среднеквадратическое отклонение в определении коэффициентов функции отклика рассчитывается по формуле:


где C i – величины, приведенные для плана B-D13 в таблице 1, S в² – дисперсия воспроизводимости в параллельных опытах.

Таблица 1 – Величины C i для плана B-D13

Дисперсия воспроизводимости в параллельных опытах рассчитывается по




где N – количество опытов в плане, m – количество параллельных измерений в каждом опыте, y uj – значение выходного параметра в u -ом опыте, j -ом параллельном замере, y u – среднее значение выходного параметра в u -ом опыте.

Расчетное значение t-критерия сравнивается с табличным t табл для выбранного уровня значимости (как правило, 5 %) и данного числа степеней свободы N (m –1). При табл t i <t табл коэффициент b i считается незначимым.

Проверка адекватности математической модели производится по критерию Фишера (F -критерий). Для этого вычисляется дисперсия адекватности по формуле:


где n з – количество значимых коэффициентов, y u – значение отклика, предсказанное по уравнению математической модели.

В свою очередь критерий Фишера рассчитывается как отношение:


Расчетное значение F -критерия сравнивается с табличным F табл для выбранного уровня значимости (как правило, 5 %) и чисел степеней свободы N (m –1) и (N n з ). При F <F табл уравнение математической модели считается адекватным. Результаты статистической обработки модели отображаются в четвертом логическом блоке (рисунок 5).

Рисунок 5 – Блок статистической обработки математической модели

В данном примере математическая модель прочности бетона признана адекватной по критерию Фишера (F =3,07 < F табл =3,1) и применима для решения рецептурно-технологических задач. Уравнение математической модели представляет собой квадратичную функцию трех переменных:

Поскольку для графической интерпретации функции трех переменных требуется четырехмерное пространство, с целью визуального упрощения и удобства работы с математической моделью функцию трех переменных необходимо преобразовать в функцию двух переменных, поочередно принимая константой один из факторов. В пятом логическом блоке программы представлены средства для преобразования уравнения регрессии в функцию двух переменных. Пользователь может установить постоянный фактор и задать его значение (в пределах интервала варьирования) в кодированном и натуральном виде (рисунок 6).

Рисунок 6 – Блок преобразования математической модели

В результате преобразования получаются три варианта математической модели: y =f (x 2 ,x 3 ) при x 1 =const, y =f (x 1 ,x 3 ) при x 2 =const и y =f (x 1 ,x 2 ) при x 3 =const. Для визуализации каждого из трех видов уравнений строится диаграмма линий равного уровня (изолиний), представляющая собой проекции трехмерных поверхностей на плоскости (x 2 ; x 3 ), (x 1 ; x 3 ) и (x 1 ; x 2 ). Таким образом, кривая каждой изолинии строится в координатах (x 2 , x 3 ), (x 1 , x 3 ) и (x 1 , x 2 ), а ее построение производится по квадратичным функциям x 2 =f (x 3 ), x 1 =f (x 3 ) и x 1 =f (x 2 ) соответственно (рисунок 7).

В шестом логическом блоке программы представлена интерактивная диаграмма изолиний, позволяющая пользователю снимать координаты факторного поля и значения выходного параметра в режиме реального времени.

Рисунок 7 – Диаграмма изолиний математической модели прочности бетона: x 1 =const (а), x 2 =const (б), x 3 =const (в)

Обработка данных планированного эксперимента завершается процедурой обнаружения экстремума функции отклика. Для определения координат точки экстремума производится автоматическое вычисление первой производной по каждому из значений факторов. Корни полученной системы уравнений представляют собой координаты точки экстремума исследуемого уравнения регрессии:

Рисунок 8 Поверхность отклика (а) при x 1 =const и ее сечение (б)

при x 1 =const и x 2 =const

Разработанное программное средство может применяться в любых научно-прикладных задачах по оптимизации свойств объекта исследования, подбора рецептуры и технологических параметров, где используется математическое моделирование методом ортогонального планирования экспериментов.

– Баженов, Ю.М. Модифицированные высококачественные бетоны / Ю.М. Баженов, В.С. Демьянова, В.И. Калашников // научное издание. – М.: Издательство Ассоциации строительных вузов. 2006. 368 с.

– Григорьев, Ю.Д. Планы эксперимента для моделей регрессии типа сплайнов / Ю.Д. Григорьев // Заводская лаборатория. Диагностика материалов. №11 (79). 2013.

– Ординарцева, Н.П. Планирование эксперимента в измерениях / Н.П. Ординарцева // Заводская лаборатория. Диагностика материалов. № 03 (79). 2013.

– Советский энциклопедический словарь / под ред. А.М. Прохорова. – М.: Советская энциклопедия, 1980.

"Белов, В.В. Компьютерная реализация решения научно-технических и образовательных задач: учебное пособие / В.В. Белов, И.В. Образцов, В.К. Иванов, Е.Н. Коноплев // Тверь: ТвГТУ, 2015. 108 с."

Задачи планирования эксперимента (ПЭ). Основные понятия ПЭ. Планирование эксперимента как метод получения функции связи. Полный факторный эксперимент (ПФЭ). Статистическая обработка результатов ПФЭ. Оптимизация РЭС методом крутого восхождения. Оптимизация РЭС симплексным методом.

Понятие планирования эксперимента(вопр.25)

Методы планирования эксперимента позволяют решать задачи выделения критичных первичных параметров (отсеивающие эксперименты: однофакторный эксперимент, метод случайного баланса), получения математического описания функции связи (ПФЭ), оптимизации РЭС (метод крутого восхождения и симплексный метод).

Выбранный критерий оптимизации должен отвечать ряду требований.

ПФЭ проводится по определенному плану (матрице ПФЭ). Для сокращения объема эксперимента используют дробные реплики.

Статистическая обработка результатов ПФЭ содержит проверку воспроизводимости опыта, оценку значимости коэффициентов модели, проверку адекватности модели.

Следует рассмотреть особенности метода крутого восхождения, симплексного метода оптимизации и последовательность проведения эксперимента для каждого из них.

Мысль о том, что эксперимент можно планировать, восходит к глубокой древности. Наш далекий предок, убедившийся, что острым камнем можно убить даже мамонта, несомненно выдвигал гипотезы , которые после целенаправленной экспериментальной проверки привели к созданию копья, дротика, а затем и лука со стрелами. Он, однако, не пользовался статистическими методами, поэтому остается непонятным, как он вообще выжил и обеспечил тем самым наше существование .

В конце 20-х г.г. XX века Рональд Фишер впервые показал целесообразность одновременного варьирования всеми факторами.

Идея метода Бокса-Уилсона проста: экспериментатору предлагается ставить последовательно небольшие серии опытов , в каждой из которых одновременно изменяются по определенным правилам все факторы. Серии организуются таким образом, чтобы после математической обработки предыдущей можно было выбрать условия проведения (т. е. спланировать) следующую серию. Так последовательно шаг за шагом достигается область оптимума . Применение ПЭ делает поведение экспериментатора целенаправленным и организованным, повышает производительность труда и надежность результатов.

ПЭ позволяет:

– сократить количество опытов;

– найти оптимум;

– получить количественные оценки влияния факторов;

– определить ошибки.

Планирование эксперимента (ПЭ) по ГОСТ 24026–80 – выбор плана эксперимента, удовлетворяющего заданным требованиям. Иначе, ПЭ – научная дисциплина, занимающаяся разработкой и изучением оптимальных программ проведения экспериментальных исследований.

План эксперимента – совокупность данных, определяющих количество, условия и порядок реализации опытов.

В ПЭ вводится понятие объекта исследования – системы, которая определенным образом реагирует на интересующее исследователя возмущение.

В проектировании ЭС объектом исследования может быть любое РЭУ (рисунок 42).

Рисунок 42 – Объект исследования

Объект исследования должен отвечать двум основным требованиям:

– воспроизводимость (повторяемость опытов);

– управляемость (условие проведения активного эксперимента заключающееся в возможности установки требуемых значений факторов и поддержании их на этом уровне).

Применение методов ПЭ для исследования РЭС основывается на том, что объект исследования (РЭС) можно представит кибернетической моделью – «черным ящиком» (см. рисунок 2), для которого может быть записана функция связи (см. формулу 1.1).

Для объекта исследования (усилителя на рисунке 42) формула 1.1 имеет вид:
,

где
,
,
,…,
.

В ПЭ функция связи или математическая модель объекта исследования – численные характеристики целей исследования (выходы «черного ящика»), выходные параметры РЭУ, параметры оптимизации.

Состояние «черного ящика» определяется набором факторов, переменных величин, влияющих на значение выходного параметра.

По ГОСТ 24026–80 фактор – переменная величина, по предположению влияющая на результат эксперимента.

Для применения методов ПЭ фактор должен быть:

– управляемым (выбрав нужное значение фактора, его можно установить и поддерживать постоянным в течение эксперимента);

– однозначным;

– независимым (не быть функцией другого фактора);

– совместимым в совокупности с другими факторами (т. е. все комбинации факторов осуществимы);

– количественным;

– точность установки (измерения) значения фактора должна быть высока.

Каждый фактор в проводимом эксперименте может принимать одно или несколько значений – уровни факторов. По ГОСТ 24026–80 уровень фактора – фиксированное значение фактора относительно начала отсчета. Может оказаться, что фактор способен принимать бесконечно много значений – непрерывный ряд. Практически принимается, что фактор имеет определенное количество дискретных уровней.

Фиксированный набор уровней факторов определяет одно из возможных состояний «черного ящика» – условия проведения одного опыта.

Если перебрать все возможные наборы уровней факторов, то получим полное множество различных состояний «черного ящика» – ,

где p – количество уровней,

n – количество факторов.

Если эксперимент проводится для 2-х факторов на 2-х уровнях варьирования, то имеем 2 2 = 4 состояния;

для 3-х факторов на 2-х уровнях – 2 3 = 8;

для 3-х факторов на 3-х уровнях – 3 3 = 27;

для 5-ти факторов на 5-ти уровнях – 5 5 = 3125 состояний «черного ящика» или опытов.

В ПЭ вводится понятие «факторное пространство». Факторным называется пространство , координатные оси которого соответствуют значениям факторов. Для «черного ящика» с двумя факторами x 1 , x 2 можно геометрически представить факторное пространство в виде рисунка 43. Здесь факторы изменяются (варьируются) на 2-х уровнях.

Для уменьшения количества опытов необходимо отказаться от экспериментов, которые содержат все возможные опыты. На вопрос: «Сколько опытов надо включить в эксперимент?» дают ответ методы ПЭ.

Известно, что минимальное количество опытов имеем при 2-х уровневом варьировании.

Итак, количество опытов 2 n .

Количество факторов n , участвующих в эксперименте, определяется с помощью отсеивающих экспериментов (однофакторного эксперимента, метода случайного баланса .

Рисунок 43 – Поверхность отклика

Так как каждому набору значений факторов соответствует некоторое (определенное) значение параметра выходного параметра y (параметра оптимизации), то имеем некоторую геометрическую поверхность отклика – геометрическое представление функции отклика.

Функция отклика – зависимость математического ожидания отклика от факторов.

Отклик – наблюдаемая случайная переменная, по предположению зависящая от факторов.

Математическое описание поверхности отклика (математическая модель) – уравнение, связывающее параметр оптимизации y с факторами (уравнение связи, функция отклика, формула 1.1). В ПЭ принимаются следующие предположения о функции отклика (поверхности отклика):

– поверхность отклика – гладкая, непрерывная функция,

– функция имеет единственный экстремум.

Планирование эксперимента как метод получения функции связи(вопр.27)

Итак, вопрос о минимизации количества опытов связан с выбором количества уровней варьирования факторов p . В ПЭ принимают p =2, при этом количество опытов N = 2 n .

При выборе подобласти для ПЭ проходят два этапа:

– выбор основного уровня фактора (x i 0);

– выбор интервала варьирования (λ i ).

Введем обозначения:


–натуральное значение основного уровня i - го фактора (базовое значение, базовый уровень),

i – номер фактора.

Пример, если R 1 = 10 кОм (см. рисунок 42), то
кОм,

для R 2 = 3кОм –
кОм и т.д.;


–натуральное значение верхнего уровня фактора, которое определяется по формуле x imax = x i 0 + λ i ,

где – натуральное значение интервала варьирования i - го фактора.

В примере (см. рисунок 42) принимается = 20 кОм, тогда

x 1 max = 120 кОМ;


–натуральное значение нижнего уровня фактора, которое определяется по формуле x imin = x i 0 - λ I , в нашем примере x 1 min = 80 кОм.

На величину интервала варьирования накладываются естественные ограничения:

– интервал варьирования должен быть не меньше ошибки измерения фактора;

– интервал варьирования должен быть на больше пределов области определения фактора .

Выбор интервала варьирования неформализуемый этап, на котором используется следующая априорная информация:

– высокая точность установки значений факторов;

– предположение о кривизне поверхности отклика;

– диапазон возможного изменения факторов.

Для РЭС принимают = (0,1,…,0,3) x i 0 .

В примере (см. рисунок 42) подсчитаем значения трех факторов при заданном базовом уровне (x i 0 ) и интервале варьирования ().

Таблица 3.1 – Значения факторов

Параметр

Номинальное значение
, кОм

Интервал

, кОм

, кОм

, кОм

В ПЭ используются не натуральные, а кодированные значения факторов.

Кодирование факторов (по ГОСТ 24026–80 – «нормализация факторов») проводится по формуле:

Тогда если x 1 = x 1 max , то имеем x i =+1, если x 1 = x 1 min , – x i = –1, x i – кодированное значение фактора.

В самом простом случае ПЭ позволяет получить математическое описание функции связи (математическую модель объекта исследования – РЭУ) в виде неполного квадратичного полинома:

.

При этом осуществляется варьирование на двух уровнях (p =2), и минимальное количество опытов равно N =2 n , где n – количество наиболее влияющих факторов, включенных в эксперимент после проведения отсеивающих экспериментов.

Эксперимент, в котором реализуются все возможные сочетания уровней факторов, называется полным факторным экспериментом (ПФЭ).

ПФЭ проводится по плану, который называется матрицей ПФЭ, или матрицей плана (таблицы 3.2 и 3.3).

Матрицей плана называют стандартную форму записи условий проведения экспериментов в виде прямоугольной таблицы, стоки которой отвечают опытам, столбцы – факторам.

Таблица 3.2 – Матрица ПФЭ для двух факторов

y j

y 1

y 2

y 3

y 4

В матрице ПФЭ знак ”–” (минус) соответствует ”+1”, а ”+” (плюс) ”соответствует ”–1”.

В матрице ПФЭ для двух факторов (n = 2) (см. таблицу 3.2) количество уровней варьирования – p = 2, количество опытов N = 2 2 = 4.

Таблица 3.3 – Матрица ПФЭ для трех факторов

y j

В матрице ПФЭ для трех факторов (n = 3) (см. таблицу 3.3) количество уровней варьирования – p = 2, количество опытов N = 2 3 = 8.

В соответствии с планом проводится ПФЭ. Для примера на рисунке 42 принимаем n =3 и реализуем матрицу ПФЭ по таблице 3.3. Для этого:

x 1 , x 2 ,… x n на уровни по первой строке матрицы (см. таблицу 3.3) (–1, –1,…,–1);

– измеряют первое значение выходного параметра y 1 ;

– устанавливают значения факторов x 1 , x 2 ,… x n на уровни по второй строке матрицы (см. таблицу 3.3) (+1, –1,…,–1);

– измеряют второе значение выходного параметра y 2 , и так далее до последнего опыта N (y n ).

Каждый эксперимент содержит элемент неопределенности в силу ограниченности экспериментального материала. Постановка повторных (параллельных) опытов может не дать совпадающих результатов из-за ошибки воспроизводимости.

Если предположить, что закон распределения случайной величины y j – нормальный, то можно найти ее среднее значение при повторных опытах (по каждой строке матрицы).

Статистическая проверка гипотез

I гипотеза – о воспроизводимости опыта.

Для проверки этой гипотезы проводят серию повторных (параллельных) опытов (дублирование опытов по каждой строке матрицы). Вычисляют среднее значение выходного параметра

,

где l – номер повторного опыта,

–количество повторных, (параллельных) опытов.

Можно вычислить дисперсию каждого - го опыта (по каждой строке матрицы):

.

Дисперсия эксперимента определяется в результате усреднения дисперсий всех опытов:

.

Формулу можно применять, если дисперсии однородны, т. е. нет дисперсий больше остальных.

Гипотеза о равенстве (однородности) дисперсий проверяется по G - критерию Кохрена:

.

По таблице для степеней свободы

,
находят
.

Если
, то гипотеза об однородности дисперсий верна, опыт воспроизводим. Следовательно дисперсии можно усреднять, можно оценить дисперсию эксперимента , но для определенного уровня значимостиq .

Уровень значимости q – вероятность совершения ошибки (отклонение верной гипотезы или принятие неверной гипотезы).

Опыт может быть невоспроизводим при:

– наличии неуправляемых, неконтролируемых факторов;

– дрейфе фактора (изменении во времени);

– корреляции факторов.

Вычислив коэффициенты модели по формулам

,

для
,

для (
), проверяютгипотезу II – значимости коэффициентов по t - критерию Стьюдента.

.

По таблице находим
для
– числа степеней свободы и уровня значимости q . Количество дублируемых опытов (k ) в общем случае равно N .

Если
, то коэффициенты модели значимы.

Если
, то коэффициенты модели незначимы, т.е.
.

Статистическая незначимость коэффициентов модели b i может быть обусловлена следующими причинами:

– уровень базового значения фактора x i 0 близок к точке частного экстремума по переменной x i ;

– интервал варьирования мал;

– фактор x i не влияет на выходной параметр y (ошибочно включен в эксперимент);

– велика ошибка эксперимента из-за наличия неуправляемых факторов.

Запишем модель только со значимыми коэффициентами:

III гипотеза – адекватности модели.

Проверяется гипотеза о равенстве (однородности) двух дисперсий. Подсчитывается дисперсия адекватности по формуле:

,

где d количество значимых коэффициентов модели;

–рассчитанное по модели значение выходного параметра. Для вычисления x i и x ih соответствующие первой строке матрицы. Для вычисления подставляют в модель со значимыми коэффициентами значенияx i и x ih соответствующие второй строке матрицы и т. д.

Модель адекватна результатам эксперимента, если выполняется условие

.

–определяется по таблице для
,
и уровня значимостиq .

Модель неадекватна результатам эксперимента если:

– не подходит форма аппроксимирующего полинома;

– большой интервал варьирования;

– велика ошибка эксперимента из-за наличия неуправляемых факторов или не включены в эксперимент значимые факторы.

Планирование экстремальных экспериментов

Метод крутого восхождения

Объект исследования – РЭС: усилитель, генератор, источник питания.

В качестве примера принимаем усилитель (рисунок 42).

Процедура метода крутого восхождения(вопр.30)

1 С центром в исходной точке (базовой, нулевой)
проводим ПФЭ для этого:

а) определяем интервал варьирования по каждому фактору и вычисляем уровни варьирования факторов (см. таблица 3.1);

б) строим матрицу ПФЭ N =2 n (см. таблицу 3.3);

в) проводим ПФЭ и измеряем значения выходного параметра y j ;

г) проводим статистическую обработку результатов эксперимента (проверяем I гипотезу о воспроизводимости опыта);

д) вычисляем линейные коэффициенты модели b 0 , b 1 , b 2 , b 3 и записываем уравнение в виде линейного полинома .

Например

Проверяем значимость коэффициентов модели и адекватность модели.

2 Записываем градиент функции отклика:

Для приведенного примера: .

3 Поставим задачу нахождения
.

Вычисляем произведение
по каждому фактору, где
– относительная величина интервала варьирования (таблица 3.4).

Таблица 3.4 – Параметры для проведения метода крутого восхождения

Параметр

b i

b i λ i

λ i кв

Округл. λ i кв

, кОм

4 Находим
и определяем базовыйi -й фактор с
.

В примере базовый фактор .

Для базового фактора принимаем шаг крутого восхождения
.

5 Вычисляем шаг крутого восхождения по остальным факторам по формуле

,

в числителе b i берется со своим знаком.

;

.

Округляем
.

Переведем относительную величину шага крутого восхождения в натуральное значение:

.

6 «Идем» в направлении максимума (экстремума) по градиенту.

Для этого нужно провести опыты в новых точках плана.

Сначала проводим «мысленные» опыты. «Мысленные» опыты заключаются в вычислении «предсказанных» значений выходного параметра
в определенных точках
факторного пространства.

Для этого:

а) подсчитываем значения факторов в «мысленных» опытах по формуле

,

где h = 1, 2, …, f –номер шага крутого восхождения (таблица 3.5);

Таблица 3.5 – «Шаги» крутого восхождения

N + h

Номер «шага» (h )

б) кодируем значения факторов для «мысленных» опытов и заносим в таблицу 3.6:

;

;

;

;

;

;

;

;

;

;

Таблица 3.6 – Значения кодированных факторов

N + h

x 2

в) подставляя кодированные значения факторов в уравнение

,

вычисляем выходной параметр
(,не вычисляют, они есть в ПФЭ).

Подсчитываем , , для модели примера:

7 Сравниваем результаты «мысленных» опытов с результатами эксперимента.

Выбираем
, соответствующее (N + h ) «мысленному» опыту.

Проверяем на объекте исследования (усилителе)
(точку с параметрами
).

Принимаем условия (N + h )-го опыта за центр нового ПФЭ (базовая точка).

Например, для
=
кОм;
кОм;
кОм.

8 Проводим ПФЭ и статистическую обработку результатов. Находим новую модель (с другими коэффициентами) и повторяем движение к оптимуму.

Так как каждый цикл приближает нас к оптимуму, нужно уменьшить шаг
, или 0,01.

Движение к оптимуму прекращают, когда все коэффициенты модели окажутся
.

Симплексный метод оптимизации(вопр.31)

Основной особенностью симплексного метода поиска экстремума является совмещение процессов изучения поверхности отклика и перемещения по ней. Это достигается тем, что эксперименты ставятся только в точках факторного пространства, соответствующих вершинам симплекса.

В основу плана положен не гиперкуб, используемый для ПФЭ, а симплекс – простейшая геометрическая фигура, при заданном количестве факторов.

Что такое симплекс?

n -мерный симплекс – это выпуклая фигура, образованная (n + 1)-й точками (вершинами), не принадлежащими одновременно ни одному (n 1)-мерному подпространству n -мерного пространства (X n ).

Для двух факторов x 1 и x 2 (n =2) двумерный симплекс имеет вид треугольника на плоскости (рисунок 44).

Рисунок 44 – Двумерный симплекс с тремя вершинами

Для трех факторов x 1 , x 2 и x 3 (n =3) трехмерный симплекс имеет вид треугольной пирамиды (рисунок 45).

Рисунок 45 – Трехмерный симплекс с четырьмя вершинами

Для одного фактора x 1 (n =1) одномерный симплекс имеет вид отрезка на прямой (рисунок 46).

Рисунок 46 – Одномерный симплекс с двумя вершинами

Использование симплекса основано на его свойстве, которое заключается в том, что отбросив одну из вершин с худшим результатом и используя оставшуюся грань, можно получить новый симплекс, добавив одну точку, зеркальную относительно отброшенной. В вершинах симплекса ставят эксперимент, затем точку с минимальным значением выходного параметра (y j ) отбрасывают и строят новый симплекс с новой вершиной – зеркальным отображением отброшенной. Формируется цепочка симплексов, перемещающихся по поверхности отклика в область экстремума (рисунок 47).

Рисунок 47– Движение к оптимуму по поверхности отклика

Для упрощения вычислений принимают условие, что все ребра симплекса равны.

Если одну из вершин симплекса поместить в начало координат, а остальные расположить так, чтобы ребра, выходящие из этой вершины образовывали одинаковые углы с соответствующими осями координат (рисунок 48), то координаты вершин симплекса могут быть представлены матрицей.

Рисунок 48 – Двумерный симплекс с вершиной в начале координат

Матрица координат вершин многомерного симплекса

Если расстояние между вершинами равно 1, то

;

.

Процедура последовательного симплекса

1 Пусть нужно найти
,

2 Задается шаг варьирования по каждому фактору x i . Пример в таблице 3.7.

Таблица 3.7– Значения факторов для первоначального симплекса

Параметр

x i

x 2

x 3

3 Задается размер симплекса (расстояние между вершинами)
регулярный симплекс.

4 Обозначаются вершины симплекса С j , где j – номер вершины. В примере j =4.

5 Производится ориентация первоначального симплекса. Для этого одну из вершин начального симплекса (С j 0 ) помещают в начало координат. А именно, за нулевую точку начального симплекса принимают номинальные значения факторов.

Строится матрица координат вершин симплекса с первой вершиной в начале координат и значения координат вершин заносятся в таблицу (таблица 3.8).

Таблица 3.8 – Координаты вершин симплекса

Координаты вершин

x i

x n

Вычисляют координаты остальных вершин начального симплекса (С j 0 ):

Результаты вычислений заносят в таблицу (таблица 3.9).

Таблица 3.9 – Координаты вершин и результаты эксперимента

симплекса

(С j0 )

Координаты вершин

y j

x 11 = x 10

x 21 = x 20

x 31 = x 30

y 2

С j *

x 1 j *

x 2 j *

x 3 j *

y j *

Значения координат вершин вычисляются по формулам. Для примера n =3 имеем:

;
;
;

;
;
;

;
;
.

6 Реализуется эксперимент в вершинах симплекса.

Для этого устанавливают значения факторов, соответствующие первой вершине начального симплекса С 10 , и измеряют значения выходного параметра у 1 . Устанавливают значения факторов, соответствующие второй вершине С 20 , и измеряют у 2 .

Рассчитанные для примера значения факторов, соответствующие координатам вершин, приводятся в таблице 3.10.

Таблица 3.10 – Значения факторов в вершинах симплекса

симплекса

(С j0 )

Координаты вершин

y j

y 1 (5В)

y 2 (6В)

y 3 (4 В)

y 4 (8В)

y 3 *(9В)

y 1 *(5В)

Расчет координат вершин для n =3:

,

С 20 х 12 = 10+0,95∙2=11,9 кОм;

х 22 = 3,0+0,24∙0,6=3,144 кОм;

х 32 = 100+0,24∙20=104,8 кОм;

С 30 х 13 = 10+0,24∙2=10,48 кОм;

х 23 = 3,0+0,95∙0,6=3,57 кОм;

х 33 = 100+0,24∙20=104,8 кОм;

С 40 х 14 = 10+0,24∙2=10,48 кОм;

х 24 = 3,0+0,24∙0,6=3,144 кОм;

х 34 = 100+0,95∙20=119 кОм.

7 Сравнивают значения выходного параметра и отбрасывают вершину, соответствующую минимальному значению y .

8 Вычисляют координаты новой вершины зеркального отображения наихудшей точки («звездной точки») по формуле

где – обозначение координатыj -ой вершины (точки), i =1,2,…,n – номер фактора, j =1,2,…, (n +1) – номер вершины симплекса.

В примере
В – минимальное значение, следовательно, зеркальная точка будет
. Для нее координаты вершины вычисляются как:

9 Проводят эксперимент в новой вершине С 3 * нового симплекса (С 10 , С 20 , С 3 *, С y 3 *.

10 Сравнивают значения выходного параметра нового симплекса (y 1 , y 2 , y 3 *, у 4) и отбрасывают вершины с минимальным y (например y 1 =5В). Строим новый симплекс с новой вершиной С 1 *.

Для этого вычисляют координаты вершины:

Снова проводят эксперимент в новой вершине С * 1 нового симплекса (С 1 *, С 20 , С 3 *, С 40) и измеряют значение выходного параметра y 1 *.

Сравниваем точки с выходными параметрами y 1 *=5, y 2 =6, y 3 * =9, y 4 =8. Отбрасываем вершину с минимальным y 1 *=5. И снова определяем новую «звездную точку».

Движение к оптимуму прекращают, если симплекс начинает вращение, т.е. одна и та же вершина встречается более чем в (n +1) последовательных симплексах.

11 В завершение проводят ПФЭ и статистическую обработку результатов. Находят модель. Движение к оптимуму прекращают, когда все коэффициенты модели окажутся
.

Техническое задание (ТЗ , техзадание )(вопр.8) - исходный документ для проектирования сооружения или промышленного комплекса, конструирования технического устройства (прибора, машины, системы управления и т. д.), разработки информационных систем, стандартов либо проведения научно-исследовательских работ (НИР).

ТЗ содержит основные технические требования, предъявляемые к сооружению, изделию или услуге и исходные данные для разработки; в ТЗ указываются назначение объекта, область его применения, стадии разработки конструкторской (проектной, технологической, программной и т.п.) документации, её состав, сроки исполнения и т. д., а также особые требования, обусловленные спецификой самого объекта либо условиями его эксплуатации. Как правило, ТЗ составляют на основе анализа результатов предварительных исследований, расчётов и моделирования.

Как инструмент коммуникации в связке общения заказчик-исполнитель, техническое задание позволяет:

    обеим сторонам

    • представить готовый продукт

      выполнить попунктную проверку готового продукта (приёмочное тестирование - проведение испытаний )

      уменьшить число ошибок, связанных с изменением требований в результате их неполноты или ошибочности (на всех стадиях и этапах создания, за исключением испытаний )

    заказчику

    • осознать, что именно ему нужно

      требовать от исполнителя соответствия продукта всем условиям, оговорённым в ТЗ

    исполнителю

    • понять суть задачи, показать заказчику «технический облик» будущего изделия, программного изделия или автоматизированной системы

      спланировать выполнение проекта и работать по намеченному плану

      отказаться от выполнения работ, не указанных в ТЗ

Техническое задание - исходный документ определяющий порядок и условия проведения работ по Договору, содержащий цель, задачи, принципы выполнения, ожидаемые результаты и сроки выполнения работ.

Техническое задание является основополагающим документом всего проекта и всех взамоотношений заказчика и разработчика. Корректное ТЗ, написанное и согласованное между всеми заинтересованными и ответсвенными лицами является залогом успешной реализации проекта.

Вопр 9.

Стадия разработки

Этапы выполнения работ

Техническое предложение

Подбор материалов. Разработка технического предложения с присвоением документам литеры «П». Рассмотрение и утверждение технического предложения

Эскизный проект

Разработка эскизного проекта с присвоением документам литеры «Э». Изготовление и испытание макетов (при необходимости) Рассмотрение и утверждение эскизного проекта.

Технический проект

Разработка технического проекта с присвоением документам литеры «Т». Изготовление и испытание макетов (при необходимости). Рассмотрение и утверждение технического проекта.

Рабочая конструкторская документация: а) опытного образца (опытной партии) изделия, предназначенного для серийного (массового) или единичного производства (кроме разового изготовления)

Разработка конструкторской документации, предназначенной для изготовления и испытания опытного образца (опытной партии), без присвоения литеры. Изготовление и предварительные испытания опытного образца (опытной партии). Корректировка конструкторской документации по результатам изготовления и предварительных испытаний опытного образца (опытной партии) с присвоением документам литеры «О». Приемочные испытания опытного образца (опытной партии). Корректировка конструкторской документации по результатам приемочных испытаний опытного образца (опытной партии) с присвоением документам литеры «О 1 «. Для изделия, разрабатываемого по заказу Министерства обороны, при необходимости, - повторное изготовление и испытания опытного образца (опытной партии) по документации с литерой «О 1 « и корректировка конструкторских документов с присвоением им литеры «О 2 «.

б) серийного (массового) производства

Изготовление и испытание установочной серии по документации с литерой «О 1 « (или «О 2 «). Корректировка конструкторской документации по результатам изготовления и испытания установочной серии, а также оснащения технологического процесса изготовления изделия, с присвоением конструкторским документам литеры «А». Для изделия, разрабатываемого по заказу Министерства обороны, при необходимости, - изготовление и испытание головной (контрольной) серии по документации с литерой «А» и соответствующая корректировка документов с присвоением им литеры «Б»

Обязательность выполнения стадий и этапов разработки конструкторской документации устанавливается техническим заданием на разработку.

Примечания: 1. Стадия «Техническое предложение» не распространяется на конструкторскую документацию изделий разрабатываемых по заказу Министерства обороны. 2. Необходимость разработки документации для изготовления и испытания макетов устанавливается разработчиком. 3. Конструкторская документация для изготовления макетов разрабатывается с целью: проверки принципов работы изделия или его составных частей на стадии эскизного проекта; проверки основных конструкторских решений разрабатываемого изделия или его составных частей на стадии технического проекта; предварительной проверки целесообразности изменения отдельных частей изготовляемого изделия до внесения эти изменений в рабочие конструкторские документы опытного образца (опытной партии). 4. Под разовым изготовлением понимается единовременное изготовление одного или более экземпляров изделия, дальнейшее производство которого не предусматривается.

2. Рабочим конструкторским документам изделия единичного производства, предназначенные для разового изготовления, присваивают литеру «И» при их разработке, которой может предшествовать выполнение отдельных стадий разработки (техническое предложение, эскизный проект технический проект) и соответственно этапов работ, указанных в таблице.

1, 2. (Измененная редакция, Изм. № 1).

3. (Исключен, Изм. № 1).

4. Техническое предложение - совокупность конструкторских документов, которые должны содержать технические и технико-экономические обоснования целесообразности разработки документации изделия на основании анализа технического задания заказчика и различных вариантов возможных решений изделий, сравнительной оценки решений с учетом конструктивных и эксплуатационных особенностей разрабатываемого и существующих изделий и патентные исследования.

Техническое предложение после согласования и утверждения в установленном порядке является основанием для разработки эскизного (технического) проекта. Объем работ - по ГОСТ 2.118-73.

5. Эскизный проект - совокупность конструкторских документов, которые должны содержать принципиальные конструктивные решения, дающие общее представление об устройстве и принципе работы изделия, а также данные, определяющие назначение, основные параметры и габаритны размеры разрабатываемого изделия.

Эскизный проект после согласования и утверждения в установленном порядке служит основанием для разработки технического проекта или рабочей конструкторской документации. Объем работ - по ГОСТ 2.119-73.

6. Технический проект - совокупность конструкторских документов, которые должны содержать окончательные технические решения, дающие полное представление об устройстве разрабатываемого изделия, и исходные данные для разработки рабочей документации.

Технический проект после согласования и утверждения в установленном порядке служит основанием для разработки рабочей конструкторской документации. Объем работ - по ГОСТ 2.120-73. 7. Ранее разработанные конструкторские документы применяют при разработке новых или модернизации изготовляемых изделий в следующих случаях:

а) в проектной документации (техническом предложении, эскизном и техническом проектах) и рабочей документации опытного образца (опытной партии) - независимо от литерности применяемых документов;

б) в конструкторской документации с литерами «О 1 « («О 2 «), «А» и «Б», если литерность применяемого документа та же или высшая.

Литерность полного комплекта конструкторской документации определяется низшей из литер, указанных в документах, входящих в комплект, кроме документов покупных изделий.

(Измененная редакция, Изм. № 1).

8. Конструкторские документы, держателями подлинников которых являются другие предприятия, могут применяться только при наличии учтенных копий или дубликатов.

Системный подход(вопр.10) - это направление исследования объекта с разных сторон, комплексно, в отличие от ранее применявшихся (физических, структурных и т.д.). При системном подходе в рамках моделирования систем необходимо прежде всего четко определить цель моделирования. Необходимо помнить, что невозможно полностью смоделировать реально функционирующую систему (систему-оригинал), а необходимо создать модель (систему-модель) под поставленную проблему при решении конкретной задачи. В конечном итоге моделирование должно адекватно отражать реальные процессы поведения исследуемых систем. Одной из целей моделирования является ее познавательная направленность. Выполнению этой цели способствует правильный отбор в создаваемую модель элементов системы, структуры и связей между ними, критерия оценки адекватности модели. При таком подходе упрощается классификация реальных систем и их моделей.

Таким образом, в целом системный подход предполагает следующие этапы решения проблемы:

    Изучение предметной области (качественный анализ).

    Выявление и формулирование проблемы.

    Математическая (количественная) постановка проблемы.

    Натурное и/или математическое моделирование исследуемых объектов и процессов.

    Статистическая обработка результатов моделирования.

    Поиск и оценка альтернативных решений.

    Формулирование выводов и предложений по решению проблемы.

Вопр.17 Требования к конструкциям ЭС и показатели их качества При решении задач конструирования заказных БИС и кристаллов СВЧ ИС решаются задачи операции входного контроля исходных данных, покрытия, компоновки, взаимного расположения компонентов при минимуме числа пересечений, трассировки, контроля топологии, изготовления рисунков фотошаблонов и их оригиналов. Главное, что надо отметить, это то, что радиоинженер-конструктор-технолог является пользователем средств вычислительной техники, а не их разработчиком и программистом, поэтому ему нужны основы этих знаний, чтобы грамотно решать свои задачи по автоматизированному конструированию. К основным требованиям, предъявляемым к конструкциям ЭС относятся высокое качество энергоинформационных (электрических) показателей, надежность, прочность, жесткость, технологичность, экономичность и серийноспособность конструкции при малой материалоемкости и потребляемой мощности. Конструкции, отвечающие этим требованиям, должны обладать минимальными массой m, объемом V, потребляемой мощностью Р, частотой отказов l, стоимостью С и сроком разработки Т, должны быть вибро- и ударопрочны, работать в нормальном тепловом режиме и иметь достаточно высокий для производства процент выхода годных изделий. Показатели, характеризующие эти качества, могут быть разбиты на следующие группы: абсолютные (в абсолютных единицах), комплексный (безразмерный, обобщенный), удельные (в удельных величинах) и относительные (безразмерные, нормированные). К абсолютным показателям относят массу конструкции, ее объем, потребляемую мощность, частоту отказов, стоимость и срок разработки. Иногда эту группу показателей называют материальными (М) показателями, отвечающими на вопрос, из чего и как сделано устройство. Группу же энергоинформационных параметров в этих случаях называют функциональными (Ф) показателями, которые отвечают на вопрос для чего и что может делать устройство. Из этих двух групп могут быть получены более общие показатели качества такие, как комплексный показатель и удельные показатели качества. Комплексный показатель качества представляет собой сумму нормированный частных материальных показателей со своими "весовыми" коэффициентами, как коэффициентами значимости этого параметра на суммарное качество конструкции: К=j m m o +j V V o +j l l o +j P P o +j C C o +j T T o , (1) где m o , V o , l o , P o , C o , T o – нормированные значения материальных параметров относительно заданных по техническому заданию либо отношения этих материальных параметров для разных сравнительных вариантов конструкции, j m , j V , j l , j P , j C , j T – коэффициенты значимости частных материальных параметров, определяемые методом экспертных оценок, обычно их значение выбирают в пределах от 0 до 1. Выражение (1) показывает, что чем меньше каждый из материальных параметров, тем выше качество конструкции при одних и тех же функциональных параметрах. Коэффициенты значимости определяются группой экспертов (желательно в количестве не менее 30 человек), которые в зависимости от назначения и объекта установки РЭС присваивают каждый то или иное значение коэффициента значимости параметрам. Далее их результаты оценки суммируются, определяются средние значения и среднеквадратичные этих коэффициентов, находятся допустимые поля отклонений и по ним устраняют "промахи" экспертов, которые исключают из общей суммы и далее повторяют те же операции обработки данных. В результате получают средние, "достоверные" значения этих коэффициентов, и тем самым и само уравнение для расчетов. К удельным показателям качества конструкции относят удельные коэффициенты конструкций: плотность упаковки элементов на площади или в объеме, удельную мощность рассеивания на площади или в объеме (теплонапряженность конструкции), удельную массу (плотность) конструкции, величину истечения газа из объема конструкции (степень герметичности), Удельные коэффициенты оценивают прогресс развития новых конструкций по сравнению с предыдущими аналогами и прототипами. Они выражаются как k=М/Ф и для каждого из типов радиоустройств или болков имеют конкретное выражение размерности величин. Так для антенных устройств, если для них в качестве основного параметра взять массу, удельный коэффициент k А =m/G [кг/ед.усиления], где G – коэффициент усиления антенны; для передающих устройств k пер =m/Р вых [кг/Вт], где Р вых – выходная мощность передатчика. Поскольку передающие устройства характеризуются большим количеством функциональных параметров (коэффициентом усиления, коэффициентом шума, полосой пропускания, выходной мощностью и др.), то функциональная сложность и качество выполняемых функций для микросборочных конструктивов может быть оценено количеством разработанных микросборок (n МСБ), тогда k пер =m/ n МСБ [кг/МСБ]. Аналогично можно рассчитать удельные коэффициенты и по отношению к другим материальным параметрам и получить для сравнения аналогов их величины, выраженные в [см 3 /ед.усиления], [см 3 /Вт], [см 3 /МСБ], [руб/ед.усиления],[руб/Вт], [руб/МСБ] и т.п. Такие оценки наиболее наглядны и не требуют доказательств, что лучше а что хуже без всяких эмоций. Плотность упаковки элементов на площади или в объеме оценивается следующими выражениями g S =N/S и g V =N/V, где N – количество элементов, S и V – занимаемые ими площадь или объем соответственно. Количество элементов определяется какN=N ИС *n э +n ЭРЭ, где N ИС – количество ИС в устройстве, n э – количество элементов в одной ИС (кристалле или в корпусе), n ЭРЭ – количество навесных электрорадиоэлементов в конструкции ячейки, блока, стойки. Плотность упаковки является главным показателем уровня интеграции конструктивов того или иного уровня. Так если для полупроводниковых ИС с объемом кристалла в 1 мм 3 и количеством элементов в нем равным 40 единиц, g ИС =40*10 3 эл/см 3 , то на уровне блока цифровых РЭС g б =40 эл/см 3 . Происходит это за счет того, что кристаллы корпусируются, далее корпусированные ИС рзмещаются на плате с известным зазором и при компоновке ФЯ в блок опять-таки появляются дополнительные зазоры между пакетом ФЯ и внутренними стенками корпуса. Да и сам корпус имеет объем (объем стенок и лицевой панели), в котором нет полезных (схемных) элементов. Иначе говоря, при переходе с одного уровня компоновки на другой происходит потеря (дезинтеграция) полезного объема. Как будет сказано ниже, коэффициент дезинтеграции определяется отношение суммарного объема к полезному объему. Для блока цифрового типа он выражается какq V =V б /N ИС *V ИС, где V ИС – объем одной микросхемы (либо бескорпусной, либо корпусированной в зависимости от метода конструирования). Учтя это выражение, можно записать, что g б = (N ИС *n э)/(q V * N ИС *V ИС) =g ИС / q V , (2) где g ИС =n э / V ИС – плотность упаковки элементов в ИС. Как показано выше, в бескорпусных ИС цифрового типа малой степени интеграции эта величина составляет 40 тыс.эл./см 3 . При установке бескорпусных ИС в корпус, например IV типа, происходит увеличение объема примерно в 200 раз, а при установке корпусированных ИС на плату и далее компоновке их в объеме корпуса еще в 5 раз, т.е. суммарный коэффициент дезинтеграции составляет уже 10 3 , при этом и получается g б =40 эл/см 3 , что характерно для блоков III поколения РЭС цифрового типа. Из выражения (2) следует, что конструирование цифровых устройств высокой интеграции требует от разработчика не только применения БИС и СБИС, но и достаточно компактной компоновки. Для конструкций аналоговых ЭС, где не наблюдается четко выраженных регулярных структур активных элементов, где их число становится соизмеримым или даже меньшим, чем число пассивных навесных ЭРЭ (обычно одну аналоговую ИС "обрамляют" до 10 пассивных элементов: конденсаторов вместе с катушками и фильтрами), коэффициенты дезинтеграции объема еще более возрастает (в 3…4 раза). Из этого следует, что сравнивать конструктивы разного уровня иерархии и различных по назначению и принципу действия нельзя, т.е. этот показатель качества для всех ЭС не является универсальным. К тому же добавим, что если в одной компактной конструкции применили ИС малой степени интеграции (до 100 элементов на корпус), а в другой – плохо скомпоноввнной, но на БИС, то может оказаться по этому показателю, что вторая конструкция лучше, хотя явно видно, что она хуже. Поэтому в случае применения элементной базы разной степени интеграции сравнение конструкций по плотности компоновки неправомерно. Таким образом, плотность упаковки элементов в объеме конструктива является действительной оценкой качества конструкции, но пользоваться этим критерием для сравнения надо грамотно и объективно. Удельная мощность рассеивания определяет тепловую напряженность в объеме конструктива и рассчитывается как Р уд.расс =Р расс /V, где Р расс @(0,8…0,9)Р для цифровых регулярных структур. В аналоговых, в особенности в приемоусилительных ячейках и блоках, мощности рассеивания и теплонапряженности невелики и тепловой режим обычно бывает нормальным и с большим запасом по этому параметру. В устройствах цифрового типа это, как правило, не наблюдается. Чем выше требования на быстродействие вычислительных средств, тем больше величина потребляемой мощности, тем выше теплонапряженность. Для РЭС на бескорпусных МСБ эта проблема еще более усугубляется, так как объем при переходе от III к IV поколению уменьшается, как было отмечено выше, в 5…6 раз. Поэтому в конструкциях блоков цифрового типа на бескорпусных МСБ обязательным является наличие мощных теплоотводов (металлических рамок, медных печатных шин и т.п.) В некоторых случаях в бортовых РЭС применяют и системы охлаждения, выбор типа которых проводится по критерию удельной мощности рассеивания с поверхности блока (Р¢ уд.расс =Р расс /S, Вт/см 2). Для блоков цифрового типа III поколения допускаемая тепловая напряженность составляет 20…30 Вт/дм 3 в условиях естественной конвекции и при перегреве корпуса относительно среды не более, чем 40 О С, а для блоков IV поколения порядка 40 Вт/дм 3 и более. Удельная масса конструкции выражается как m¢=m/V. Этот параметр ранее считался за главный критерий оценки качества аппаратуры и далее было условное деление конструкций на "тонущую РЭА" (m¢>1 г/см 3) и "плавающую РЭА" (m¢<1 г/см 3). Если конструкция была тонущая, то считали, что она компактна и хорошо скомпонована (мало воздуха и пустот в корпусе). Однако с появление IV поколения конструкций РЭС, где преобладающей долей массы являлись металлические рамки и с более толстыми стенками корпус (для обеспечения требуемой жесткости корпуса при накачке внутрь его азота), даже плохо скомпонованные ячейки оказывались тонущими. И чем больше и впустую расходовался металл, тем более возрастал этот показатель, переставший отражать качество компоновки и конструкции в целом. Поэтому для сравнения качества конструкций по этому критерию отказались, но он оказался полезным для решения другой задачи, а именно, распределение ресурса масс в конструктивах. Величина истечения газа из объема конструкции оценивает степень ее герметичности и определяется как D=V г *р/t , (3) где V г - объем газа в блоке, дм 3 ; р – величина перепада внутреннего и внешнего давления (избыточного давления) в блоке, Па (1 Па=7,5 мкм рт.ст.); t - срок службы или хранения, с. Для блоков с объемом V г =0,15…0,2 дм 3 в ответственных случаях при выдержке нормального давления к концу срока службы (8 лет) требуется D=6,65*10 -6 дм 3 *Па/с (или 5,5*10 -5 дм 3 *мкм рт.ст/с), в менее ответственных случаях полная вакуумная герметизация не обеспечивается и степень герметичности может быть уменьшена до значения 10 -3 дм 3 *мкм.рт.ст/с. В группе относительных показателей находятся коэффициенты дезинтеграции объема и массы, показатель функционального расчленения, величина перегрузки конструкции при вибрациях и ударах, а также многие параметры технологичности конструкции такие, как коэффициенты унификации и стандартизации, коэффициент повторяемости материалов и изделий электронной техники, коэффициент автоматизации и механизации и др. Последние достаточно хорошо известны из технологических дисциплин, поэтому повторять их содержание и влияние на качество конструкции не станем. Как уже отмечалось выше при рассмотрении плотности упаковки, в конструкциях РЭС разного уровня компоновки присутствуют потери полезного объема, а следовательно, и масс при корпусировании ИС, компоновке их в ячейки и далее в блоки, стойки. Уровень их может быть весьма значительным (в десятки и сотни раз). Оценки этих потерь (дезинтеграции) объемов и масс проводится с помощью коэффициентов дезинтеграции q V и q m соответственно, выражаемые как отношение суммарного объема (массы) конструктива к его полезному объему (массе), или q V =V/V N , q m =m/m N , (4) где V N =SV с.э., m N =Sm с.э. – полезный объем и масса схемных элементов. При переходе с одного уровня компоновки на более высший уровень коэффициенты дезинтеграции объема (или массы) q V(m) показывают, во сколько раз увеличиваются суммарные объем (или масса) комплектующих изделий к следующей конкретной форме их компоновки, например при переходе от нулевого уровня – корпусированных микросхем к первому – функциональной ячейке имеемq V(m) =V(m) ФЯ /SV(m) ИС, при переходе от уровня ячейки к блоку q V(m) = V(m) б /SV(m) ФЯ и т.д., где V(m) ИС, V(m) ФЯ, V(m) б – соответственно объемы (или массы) микросхемы, ячейки, блока. Как и в случае критерия плотности упаковки заметим, что коэффициенты дезинтеграции реально отражают качество конструкции, в частности ее компактность, но и они не могут быть использованы для сравнения конструктивов, если они относятся к разным поколениям, разным уровням конструктивной иерархии или ЭС различного назначения и принципа действия. Анализ существующих наиболее типовых и компактных конструктивов различных поколений и различного назначения позволил получить средние значения их коэффициентов дезинтеграции объема и массы (табл. 1). там же приведены значения удельной массы конструктивов. Показатель функционального разукрупнения конструкции представляет собой отношение количества элементов N в конструктиве к количеству выводов М из него, или ПФР=N/M. Например для цифровой бескорпусной МСБ, содержащей 12 бескорпусных ИС с 40 элементами в каждом кристалле (N=40*12=480 элементов) и 16 выходными площадками, имеем ПФР=480/16=30. Чем выше ПФР, тем ближе конструкция к конструктиву высокой интеграции, тем меньше монтажных соединений между ними, тем выше надежность и меньше масса и габариты. Наибольшее число функций и элементов монтажа "вбирают" в себя БИС¢ы и СБИС¢ы. Однако и у них есть предел степени интеграции, оговариваемый именно количеством допустимых выводов от активной площади кристалла к периферийным контактным площадкам. Наконец, величина перегрузки n действующих на конструкцию вибраций или ударов оценивается как отношение возникающего от их действия ускорения масс элементов конструкции к ускорению свободного падения, или n=a/g, где а – величина ускорения при вибрации (или ударе). Вибро- и ударопрочность конструкции определяются значениями величин допускаемых перегрузок при вибрациях и ударах, которые может выдержать конструкция без разрушения своих связей между элементами. Для того, чтобы эти свойства были обеспечены, необходимо, чтобы реально возникающие в тех или иных условиях эксплуатации перегрузки не превышали предельно допустимых для конкретной конструкции.

Вопр.26

Планирование эксперимента – выбор плана эксперимента, удовлетворяющего заданным требованиям, совокупность действий направленных на разработку стратегии экспериментирования (от получения априорной информации до получения работоспособной математической модели или определения оптимальных условий). Это целенаправленное управление экспериментом, реализуемое в условиях неполного знания механизма изучаемого явления.

В процессе измерений, последующей обработки данных, а также формализации результатов в виде математической модели, возникают погрешности и теряется часть информации, содержащейся в исходных данных. Применение методов планирования эксперимента позволяет определить погрешность математической модели и судить о ее адекватности. Если точность модели оказывается недостаточной, то применение методов планирования эксперимента позволяет модернизировать математическую модель с проведением дополнительных опытов без потери предыдущей информации и с минимальными затратами.

Цель планирования эксперимента – нахождение таких условий и правил проведения опытов при которых удается получить надежную и достоверную информацию об объекте с наименьшей затратой труда, а также представить эту информацию в компактной и удобной форме с количественной оценкой точности.

Пусть интересующее нас свойство (Y) объекта зависит от нескольких (n) независимых переменных (Х1, Х2, …, Хn) и мы хотим выяснить характер этой зависимости - Y=F(Х1, Х2, …, Хn), о которой мы имеем лишь общее представление. Величина Y – называется “отклик”, а сама зависимость Y=F(Х1,Х2, …, Хn) – “функция отклика”.

Отклик должен быть определен количественно. Однако могут встречаться и качественные признаки Y. В этом случае возможно применение рангового подхода. Пример рангового подхода - оценка на экзамене, когда одним числом оценивается сложный комплекс полученных сведений о знаниях студента.

Независимые переменные Х1, Х2, …, Хn – иначе факторы, также должны иметь количественную оценку. Если используются качественные факторы, то каждому их уровню должно быть присвоено какое-либо число. Важно выбирать в качестве факторов лишь независимые переменные, т.е. только те которые можно изменять, не затрагивая другие факторы. Факторы должны быть однозначными. Для построения эффективной математической модели целесообразно провести предварительный анализ значимости факторов (степени влияния на функцию), их ранжирование и исключить малозначащие факторы.

Диапазоны изменения факторов задают область определения Y. Если принять, что каждому фактору соответствует координатная ось, то полученное пространство называется факторным пространством. При n=2 область определения Y представляется собой прямоугольник, при n=3 – куб, при n >3 - гиперкуб.

При выборе диапазонов изменения факторов нужно учитывать их совместимость, т.е. контролировать, чтобы в этих диапазонах любые сочетания факторов были бы реализуемы в опытах и не приводили бы к абсурду. Для каждого из факторов указывают граничные значения

, i=1,... n.

Регрессионный анализ функции отклика предназначен для получения ее математической модели в виде уравнения регрессии

где В1, …, Вm – некоторые коэффициенты; е – погрешность.

Среди основных методов планирования, применяемых на разных этапах исследования, используют:

планирование отсеивающего эксперимента, основное значение которого выделение из всей совокупности факторов группы существенных факторов, подлежащих дальнейшему детальному изучению;

планирование эксперимента для дисперсионного анализа, т.е. составление планов для объектов с качественными факторами;

планирование регрессионного эксперимента, позволяющего получать регрессионные модели (полиномиальные и иные);

планирование экстремального эксперимента, в котором главная задача – экспериментальная оптимизация объекта исследования;

планирование при изучении динамических процессов и т.д.

Инициатором применения планирования эксперимента является Рональд А. Фишер, другой автор известных первых работ – Френк Йетс. Далее идеи планирования эксперимента формировались в трудах Дж. Бокса, Дж. Кифера. В нашей стране - в трудах Г.К. Круга, Е.В. Маркова и др.

В настоящее время методы планирования эксперимента заложены в специализированных пакетах, широко представленных на рынке программных продуктов, например: StatGrapfics, Statistica, SPSS, SYSTAT и др.

Вопр.18 Полный факторный эксперимент предполагает возможность управлять объектом по одному или нескольким независимым каналам (см. рис.1.5,в).

В общем случае, схема эксперимента может быть представлена в виде, представленном на рис.1.5, в. В схеме используются следующие группы параметров:

1. управляющие (входные )

2. параметры состояния (выходные )

3. возмущающие воздействия ()

При многофакторном и полном факторном эксперименте выходных параметров может быть несколько. Пример такого пассивного многофакторного эксперимента будет рассмотрен в шестой главе настоящей книги.

Управляющие параметры представляют собой независимые переменные, которые можно изменять для управления выходными параметрами. Управляющие параметры называют факторами . Если (один управляющий параметр), то эксперимент однофакторный. Многофакторный эксперимент соответствует конечному числу управляющих параметров. Полный факторный эксперимент соответствует наличию возмущающих воздействий в многофакторном эксперименте.

Диапазон изменения факторов или число значений, которое они могут принимать называется уровнем фактора .

Полный факторный эксперимент характеризуется тем, что при фиксированных возмущающих воздействиях минимальное число уровней каждого фактора равно двум. В этом случае, зафиксировав все факторы кроме одного, необходимо провести два измерения, соответствующих двум уровням этого фактора. Последовательно осуществляя такую процедуру для каждого из факторов , получим необходимое число опытов в полном факторном эксперименте для реализации всех возможных сочетаний уровней факторов , где - число факторов.

Прежде всего полезно было бы дать определение понятия «эксперимент». Однако, попытка дать строгое определение этого понятия «в достаточно общей и к тому же краткой форме практически невозможно». Некоторые считают, что лучше пользоваться метафорами. Пример метафорического определения дал известный французский ученый-экспериментатор Кювье: «Наблюдатель слушает природу, экспериментатор вопрошает и принуждает ее разоблачиться».

Приведем здесь все же одно из возможных определений

Эксперимент – это совокупность операций совершаемых над объектом исследования с целью получения информации о его свойствах. Эксперимент, в котором исследователь по своему усмотрению может изменять условия его проведения, называется активным экспериментом. Если исследователь не может самостоятельно изменять условия его проведения, а лишь регистрирует их, то это пассивный эксперимент.

      Примеры «хороших» и «плохих» экспериментов

Хотя определение понятия научного эксперимента вызывает трудности, примеры хорошо и плохо поставленных экспериментов привести достаточно легко. Следуя монографии , рассмотрим один из широко известных примеров – взвешивание трех объектов a, b, c на аналитических весах.

а) традиционная схема (табл.1)

(Кстати сказать, схема, приведенные в таблицах 1, 2 , называются матрицами планирования. В обеих таблицах каждая строка задает условия проведения одного опыта. Обозначение «+1» указывает на проведение с объектом действия, а «-1» на отсутствие действия

Таблица 1. Традиционная схема взвешивания трех объектов

Традиционная схема выглядит следующим образом. Вначале выполняется холостое взвешивание для определения нулевой точки весов. Затем поочередно взвешивается каждый из объектов. Такая последовательность действий соответствует так называемому однофакторному эксперименту. Изучается поведение каждого фактора в отдельности. Масса каждого из объектов определяется по результатам двух опытов: взвешивания

самого объекта и холостого опыта. Массы объектов А i определяются формулами

А i = y i – y 0 (1)

Дисперсия результата взвешивания такова

 2 {A i } =  2 {y i – y 0 } = 2 2 {y} (2)

где {y} – ошибка взвешивания

Теперь проведем процедуру другим способом, используя схему, приведенную в табл.2. Здесь, как и в предыдущем случае, каждая строка задает условия проведения единичного опыта.

Таблица 2. Планирование эксперимента при взвешивании трех объектов

Разница с предыдущим случаем состоит в том, что вместо «холостого» взвешивания проводится взвешивание всех трех образцов вместе. Определим по результатам опытов массы объектов

А 1 =

А 2 =
(3)

А 3 =

Для помнящих правила действий с матрицами заметим, что числители выражений (3) получены путем умножения элементов последнего столбца на элементы столбцов a, b и c. Учитывая смысл величины у 4 , заметим, что масса объекта, определяемого по одной из формул (3), входит в нее дважды, что приводит к появлению в знаменателе числа 2, а массы остальных объектов сокращаются. и, таким образом, не влияют на результат.

Определим теперь дисперсию, связанную с ошибкой взвешивания. Сделаем это, например, для 1-го объекта.

 2 {A} =  2 {
} = 4 2 {y}/ 4 =  2 {y} (4)

Аналогичный результат получается и для объектов b и c.

Таким образом, дисперсия получилась вдвое меньше, хотя количество опытов осталось тем же. Причина увеличения точности состоит в том, что в первом варианте масса образца определялась как результат двукратного взвешивания, а во втором варианте – из четырехкратного. Вторую схему эксперимента можно назвать многофакторной , поскольку при вычислении масс мы оперируем всеми факторами (объектами). Теперь перейдем к последовательному изложению основных определений, используемых в рассматриваемом разделе науки.

4.3.Основные определения, связанные с процессом планирования

Начнем с определения самого предмета теории планирования эксперимента.

Планирование эксперимента – это процедура выбора числа и условий проведения опытов, необходимых и достаточных для решения поставленной задачи с требуемой точностью.

Рассматриваются два типа задач планирования эксперимента. интерполяционные и экстремальные. Для первого типа задач эксперимент проводится с целью установления связи между некоторыми свойствами системы и рядом факторов. Для второго типа необходимо определить условия оптимизации работы некоторой системы, качество которой выражается некоторой целевой функцией или рядом функций.

Планирование эксперимента – выбор плана эксперимента, удовлетворяющего заданным требованиям, совокупность действий направленных на разработку стратегии экспериментирования (от получения априорной информации до получения работоспособной математической модели или определения оптимальных условий). Это целенаправленное управление экспериментом, реализуемое в условиях неполного знания механизма изучаемого явления.

Цель планирования эксперимента – нахождение таких условий и правил проведения опытов при которых удается получить надежную и достоверную информацию об объекте с наименьшей затратой труда, а также представить эту информацию в компактной и удобной форме с количественной оценкой точности.

Важнейшей задачей методов обработки полученной в ходе эксперимента информации является задача построения математической модели изучаемого явления, процесса, объекта. Ее можно использовать и при анализе процессов и при проектировании объектов. и для решения задач оптимизации, Математическая модель выражается уравнением, связывающим интерполируемую или оптимизируемую величину с факторами.

Y=F(Х 1 2 , …, Х n ) (5)

Величина Y – называется “откликом”, а сама зависимость Y=F(Х 1 2 , …, Х n ) – “функцией отклика”. Отклик должен быть определен количественно. Однако могут встречаться и качественные признаки Y . В этом случае возможно применение рангового подхода. Пример рангового подхода - оценка на экзамене, когда одним числом оценивается сложный комплекс полученных сведений о знаниях студента.

Применение методов планирования эксперимента позволяет определить погрешность математической модели и судить о ее адекватности. Если точность модели оказывается недостаточной, то применение методов планирования эксперимента позволяет модернизировать математическую модель с проведением дополнительных опытов без потери предыдущей информации и с минимальными затратами.

Каждый фактор может принимать в опыте некоторое количество значений, которые называют уровнями. Фиксированный набор уровней факторов определяет одно из возможных состояний «черного ящика». Полное число состояний в большинстве случаев весьма велико, что исключает исследование путем простого перебора.

Важно отметить два основных требования, которыми должен обладать объект исследования. Первое – это воспроизводимость результатов, то есть повторение результатов при том же наборе уровней при повторении экспе-римента с учетом разброса. Плохая воспроизводимость может быть связана нестационарностью. Тогда необходимо использовать специальные методы.

Второе – это управляемость объекта, то есть возможность выбора в каждом опыте тех уровней факторов, которые представляют интерес.

Независимые переменные Х 1 , Х 2 , …, Х n – иначе факторы, также должны иметь количественную оценку. Если используются качественные факторы, то каждому их уровню должно быть присвоено какое-либо число. Важно выбирать в качестве факторов лишь независимые переменные, т.е. только те которые можно изменять, не затрагивая другие факторы. Факторы должны быть однозначными. Для построения эффективной математической модели целесообразно провести предварительный анализ значимости факторов (степени влияния на функцию) и исключить малозначащие факторы.

Диапазоны изменения факторов задают область определения Y . Если принять, что каждому фактору соответствует координатная ось, то получен-ное пространство называется факторным. При n=2 область определения Y представляется собой прямоугольник, при n=3 – куб, и.т.д.

Дальнейшее продвижение в этом направлении приведет нас к необхо-димости существенных усложнений. Поэтому мы поясним факторный подход более простым способом. и чтобы не углубляться в формалистику процесса планирования эксперимента вернемся к рассмотрению конкретных примеров.

4.3.Неформальное рассмотрение процесса планирования эксперимента

Перед этим обсудим некоторые общие свойства объектов планирования эксперимента. Можно рассматривать воспроизводимые и невоспроизводимые эксперименты. Для первых из них возможно повторение эксперимента в идентичных условиях. К ним относятся, разумеется, компьютерные эксперименты и лабораторные физические или химические эксперименты. В технике чаще встречаются невоспроизводимые эксперименты. Подобный эксперимент протекает во времени необратимо без возможности его измене-ния или повторения. Обычно изменения, вносимые в процессе эксперимента, малы и их условно можно рассматривать как воспроизводимые. В таких экспериментах можно выбрать последовательность условий.

Рассмотрим два предельных случая Можно выбирать верхнее или нижнее значение независимой случайной величины и изменять его скачкообразно вплоть до достижения другого предельного значения. Но можно выбранные значения чередовать чисто случайным образом, выбирая то большее, то меньшее значение. Первый из этих планов называется последовательным , а второй – случайным (рандомизированным). По смыслу ясно, что для воспроизводимых экспериментов целесообразно применять план первого типа, а для невоспроизводимых - план второго типа.

Хорошим примером необходимости использования последовательного плана является, например, исследование коэффициентов сопротивления в зависимости от числа Рейнольдса. При этом появляется возможность фикси-ровать изменения, связанные с физикой процесса. Как удачно выражается Шенк в «Теории инженерного эксперимента», в этих случаях «сама последовательность условий является определенным параметром».

Но все же для большинства инженерных экспериментов более подходящим является частично или полностью рандомизированный план .

Рассмотрим доводы в пользу такого подхода.

При натурном, а не лабораторном эксперименте внешние эффекты могут неконтролируемым образом менять условия опыта. Таким образом, при исследовании функции R (Х) как R, так и Х могут меняться за счет влияния фактора y. Эти изменения ошибочно могут восприниматься как

влияние Х на R.

В процессе эксперимента может изменяться работоспособность оператора или ухудшением точности показаний прибора.

Механические воздействия могут вызвать изменение замеренных значений переменной Х. Допустим, что в измерительном приборе или регуляторе имеет место «заедание». Тогда знак ошибки будет меняться в зависимости от направления изменения замеряемой величины и при реализации последовательного плана мы получим систематическую ошибку. Для рандомизации можно использовать, например, генератор случайных чисел.

Однофакторный эксперимент

В данном случае имеется одна регулируемая переменная. Однако, кро-ме того на результат влияют нерегулируемые внешние переменные. Их влия-ние и должно быть скомпенсировано путем рандомизации условий экспери-мента. Рассмотрим следующий пример (Шенк):

Требуется проверить работу нового резца в производственных условиях и определить скорость обработки обеспечивающую максимальный.выход продукции при заданном проценте брака. У нас один фактор –скорость

обработки. Внешние переменные – станки, рабочие, дни недели. Выбираются случайным образом 4 станочника (A, B, C, D) и 4 различные скорости обработки (1, 2, 3, 4). Простейший вариант плана

Он явно плохой, так как не учитывает последовательности изменении условий эксперимента, связанных с психологией, здоровьем, днями недели и.т.д. Рандомизация: выбор скорости по дням производится по жребию.

Этот план более совершенный, его еще можно улучшить. Для этого проведем полную рандомизацию таким образом, чтобы кроме того в данный день каждая скорость обработки встречалась только один раз.

Получившаяся матрица называется латинский квадрат и представляет собой частный случай в семействе планов факторных экспериментов. Он ха-рактерен тем, что каждый символ встречается в каждом столбце и в каждой строке только один раз.

Наконец, можно внести еще одно усовершенствование плана экспери-мента – устранить влияние того, что за каждым рабочим закреплен свой станок. Обозначим станки буквами W, X, Y, Z, таким образом, чтобы каждый рабочий обслуживал каждый станок только дин день. Тогда получим следующий план

Это так называемый греко-латинский квадрат, который позволяет устранить влияние трех факторов. Он является сбалансированным, посколь-ку количество уровней фактора (скорости) и количества значений случайных переменных равны между собой. При большем количестве случайных пере-менных задача существенно усложняется.

Если, например, мы хотим рассмотреть 6 скоростей, то для аналогич-ной сбалансированной схемы (квадрата) нам нужно иметь по шесть станков, рабочих и дней. Но можно сократить объем опытов, ограничив число рабочих тремя. Тогда можно ограничиться двумя Греко-латинскими квадратами 3 х 3

Этот план требует вдвое меньше, чем сбалансированный, но может оказаться вполне удовлетворительным