Как птицы находят дорогу во время перелетов? Птицы и небо. Особенности ориентации перелётных птиц Как птицы ориентируются

9. Ориентация птиц по солнцу

В истории науки нередки случаи, когда исследователь, стремясь к одному результату, получал другой, иногда гораздо более важный. Однако бывает и так, что ученый находит блестящее решение именно той задачи, которую ставил перед собой, и при этом обнаруживает, что причины исследуемого явления значительно глубже, чем он предполагал.

Именно таким образом сделал свое открытие Крамер, после чего многие биологи в различных исследовательских центрах забросили свою текущую работу, чтобы присоединиться к тем, кто бился над разрешением загадки живых часов.

Густав Крамер родился в Мангейме в 1910 году и получил биологическое образование в университетах Фрейбурга и Берлина. Его первая научная работа в области физиологии низших позвоночных оказалась настолько многообещающей, что в возрасте двадцати семи лет он был назначен руководителем отдела физиологии Неаполитанской зоологической станции.

Свои всемирно известные исследования по ориентации птиц в полете он начал в Гейдельбергском университете и продолжил в Институте биологии моря им. Макса Планка в Вильгельмсхафене, расположенном на западном побережье холодного Северного моря. Наблюдая за стремительными перелетами морских птиц к местам гнездовий, Крамер размышлял над вековой загадкой перелетов, над той изумительной точностью, с которой перелетные птицы находят путь к далекой цели.

Рис. 30. Исключительный по своей дальности маршрут перелета полярной крачки.

Он дивился геройству полярной крачки, этого необыкновенного летуна, что гнездится в полутора сотнях километров от Северного полюса, а с наступлением осени пролетает над Канадой, затем над безжизненными пространствами Атлантического океана к западным берегам Африки и, обогнув мыс Доброй Надежды, остается зимовать южнее Порт-Элизабета.

Но полярная крачка не единственный пример совершенства в навигационном искусстве. Новозеландская бронзовая кукушка покрывает расстояние в две тысячи километров, летя через Тасманово море к Австралии, а оттуда еще полторы тысячи километров на север через Коралловое море к крошечным участкам своих зимовок на архипелаге Бисмарка и Соломоновых островах. Еще более удивительно, что молодая кукушка, совершая такой перелет впервые, может проделать его в одиночестве, опередив своих родителей по меньшей мере на месяц.

Окольцованная белоголовая зонотрихия возвращается из года в год на один и тот же куст в саду профессора Л. Менвальда в Сан-Жозе (штат Калифорния), пролетев три с половиной тысячи километров от мест своих гнездовий на Аляске.

Загадка столь точно нацеленных перелетов очень давно интересовала биологов, и они объясняли это по-разному. И не удивительно: проблема была исключительно сложной, а возможностей научно разрабатывать ее тогда еще не было.

Поэтому, когда Крамер доложил на международном конгрессе орнитологов о результатах своих экспериментов по изучению ориентации птиц, конгресс был изумлен и восхищен. Р. Питерсон сказал: «Сообщение Густава Крамера об экспериментах со скворцами, показавших, что единственный источник ориентации птиц - солнце, чрезвычайно захватывает и увлекает».

Сфера исследования миграций животных очень обширна, и определение направления миграций, конечно, только один из ее аспектов. Но проникновение в один аспект часто приводит к прояснению всей проблемы в целом.

Как мы видели, животные часто мигрируют к очень удаленным местам и там находят конечную, подчас ничтожно малую по размерам цель своего перелета. Такая точность была бы физически невозможной при отсутствии некой системы управления, аналогичной системе управления самонаводящейся торпеды.

При этом крайне важно понимать, что такая система управления не может функционировать без постоянного притока информации из окружающего мира. Самонаводящаяся торпеда должна получать сигналы, которые отражаются от цели, иначе она промахнется. Подобно этому, и животные должны получать сигналы из окружающей среды, иначе направляющий их механизм не сработает.

Но какие сигналы? Информация, поступающая из окружающей среды, может восприниматься либо известными нам органами чувств птицы, либо пока не известными. При этом независимо от того, каким образом воспринимается эта информация, она должна быть такой, чтобы птица смогла решить три задачи.

Во-первых, где она находится в данный момент и в каком направлении ей нужно следовать дальше.

В-третьих, как узнать место назначения, прилетев туда.

Существует ли какое-то единое чувство, известное или неизвестное нам, благодаря которому птица могла бы получить ответ на все эти вопросы? Попробуем рассмотреть возможные виды информации.

Каждый объект на поверхности Земли излучает тепло. Горячие предметы испускают излучение высокой интенсивности с малой длиной волны, а холодные - низкой интенсивности с большой длиной волны. Поэтому и частота и интенсивность излучения на полюсах будут сильно отличаться от таковых у экватора. Можно было бы предположить, что дальние мигранты улавливают эту разницу. Но, как заметил Гриффин, это было бы слишком простым объяснением способности птиц к ориентации.

Такому объяснению противоречат три факта. Излучение распространяется прямолинейно. Поэтому излучение от объекта, находящегося всего в полуторастах километрах от птицы, попадет в точку, расположенную значительно выше уровня обычных полетов птиц. Кроме того, тепловое излучение сильно искажается такими особенностями ландшафта, как леса, озера, пустыни, города, которые вносят в него так называемый «шум». И наконец, никто до сих пор убедительно не доказал, что птицы могут воспринимать изменения теплового излучения.

Все это касается обычного теплового излучения. А как же быть с чем-то менее очевидным? С магнитным полем Земли, например. Его тоже называли в качестве возможного «компаса» для птиц. Эквипотенциальные линии напряженности магнитного поля Земли примерно совпадают с параллелями. Если птица ощущает разницу в напряженности магнитного поля, то она может определить географическую широту своего местонахождения. Или, скажем, магнитное наклонение. Если птица воспринимает его, стрелка ее «компаса» будет находиться в горизонтальном положении над экватором и почти вертикальном - у полюсов. Изменение положения этой стрелки скажет птице о том, где она находится. Но и тут возникают препятствия. Опыты показали, что птицы не реагируют на магнитное поле, даже значительно более сильное, чем магнитное поле Земли. Кроме того, экспериментаторам ни разу не удалось научить птиц реагировать на магнитные поля.

Какие же другие особенности окружающей птицу среды могут давать ей информацию о ее местоположении? Очевидно, вращение Земли. Угловая скорость ее вращения такова, что точка на поверхности Земли, расположенная недалеко от экватора, движется со скоростью около 1600 км/час. Если птица летит на восток со скоростью 100 км/час, ее истинная скорость (относительно солнца) будет около 1700 км/час, а если она летит на запад, то около 1500 км/час. Если птица воспринимает эту разницу, то она может, по-видимому, определить направление полета и географическую широту своего местоположения.

А если птица не летит? Известен случай, когда гуси с подрезанными крыльями прошли несколько километров в направлении своих обычных перелетов. Кроме того, было убедительно показано, что содержащиеся в клетках птицы прекрасно определяют направление. Но, несмотря на очевидность фактов, ученые до сих пор не смогли установить, что помогает птицам ориентироваться в полете.

Итак, мы получили некоторое представление о сложности проблемы, с которой столкнулся Крамер. Немалую трудность в экспериментах по изучению ориентации птиц представляло определение направления их полета, поскольку наблюдать его можно было, лишь следуя за птицами. Нужен был новый экспериментальный метод.

Давно известно, что в сезон перелетов птицы, содержащиеся в клетках, обнаруживают так называемое «перелетное беспокойство»: они перепархивают с места на место, но сохраняют при этом определенное направление. Не это ли направление они избрали бы для полета, если бы были на свободе? На этот вопрос и решил ответить Крамер.

Объектом для своих наблюдений он выбрал европейского скворца, который превосходно переносит содержание в клетках, легко приручается и поддается обучению.

И вскоре лаборатория в Вильгельмсхафене обзавелась молодыми желторотыми птицами, а Крамер нетерпеливо ждал конца лета, когда начинаются осенние перелеты.

Еще до наступления прохладных октябрьских дней он установил непрерывное наблюдение за своими скворцами в светлое время суток (поскольку пролет скворцов идет днем). Из Вильгельмсхафена скворцы осенью обычно направляются на юго-запад. Предпочтут ли находящиеся в клетках скворцы именно это направление? Ждать Крамеру пришлось недолго: в октябре его птицы нервно бились в юго-западных углах своих клеток.

Какими ориентирами воспользовались птицы? Может быть, каким-нибудь чисто физическим признаком местности вроде дерева или холма? Крамер ставил клетки в различные места, прикрывал нижнюю часть клеток, чтобы скворец мог видеть только небо, но птицы по-прежнему столь же упорно стремились на юго-запад. Следующей весной, когда направление перелетов скворцов изменилось на северо-западное, птицы в своих клетках отдавали предпочтение северо-западному направлению.

Такова суть экспериментального метода, который столь долго искал Крамер. Теперь ему предстояло создать оборудование, чтобы проводить тысячи наблюдений и статистически обрабатывать их.

Была построена круглая клетка с абсолютно симметричной внутренней поверхностью: находящаяся в ней птица не имела никаких ориентиров, по которым она могла бы определить направление. С жердочки, расположенной в центре клетки, птица в период перелетного беспокойства постоянно вспархивала, порываясь лететь все время в одном направлении. Прозрачный пластиковый пол позволял наблюдателю, лежащему под клеткой, следить за птицей. Чтобы обеспечить точную регистрацию положения птицы в любой момент, пластик был размечен на ряд секторов.

Самой важной переменной в опытах Крамера было направление света, попадавшего в клетку. Поэтому он поместил экспериментальную круглую клетку в шестигранный павильон, каждая из сторон которого имела окно со ставнем. К внутренней стороне ставня прикреплялось зеркало, изменявшее направление луча света, идущего в клетку. И наконец, и клетку и экран вокруг павильона можно было вращать.

Когда все было готово, Крамер расположился под прозрачным дном клетки с тетрадью и карандашом в руках и каждые десять секунд записывал, какой из размеченных секторов занимала птица. По утрам в течение по крайней мере часа Крамер отмечал положение птицы и очень скоро убедился, что ни оборудование, ни его собственное присутствие не беспокоят скворцов.

Теперь исследователям уже не мешали неопределенности и неточности, неизбежные при наблюдениях в поле. Лабораторный опыт позволял экспериментатору менять контролируемые условия любым нужным ему образом. Как, например, будут вести себя птицы, если луч света, попавший в клетку, отразится зеркалом под прямым углом к его естественному направлению? Ведь в такой ситуации положение солнца должно казаться находящейся в клетке птице повернутым на 90°.

Рис. 32. Скворец, обученный летать в одном и том же направлении в одно и то же время (например, когда солнечные лучи падали в направлении, обозначенном светлой стрелкой), знал, в каком направлении нужно лететь и в любое другое время дня (например, когда солнечные лучи падали в направлении темной стрелки). Точками показаны отдельные положения птицы.

И снова Крамер педантично записывал: «Первые 10 секунд птица в секторе № 8; вторые 10 секунд - в секторе № 9; третьи 10 секунд - в секторе № 7; четвертые 10 секунд - в секторе № 9; пятые 10 секунд - в секторе № 8…» и так далее, пока не сделал более 350 записей в течение всего лишь часа. Вскоре достоверность полученных результатов стала очевидной. Но примут ли их скептически настроенные ученые? Наверняка нет, поскольку из этих результатов следовал совершенно поразительный вывод. И Крамер снова принимается за свои утомительные наблюдения.

Когда же он объявил о своих выводах, научный мир был действительно поражен. Более всего ученых удивил тот факт, что когда направление солнечных лучей было изменено на 90°, скворцы порывались лететь в новом направлении, повернутом на те же 90°. Значит, для определения направления перелета птицам необходимо взять пеленг по солнцу!

Крамер искал ответ на интересовавшие его вопросы, всячески изменяя условия своего эксперимента. Вращал непрозрачный экран вокруг павильона, так что птицы могли видеть лишь часть неба. Вращал клетку. Прикрывал павильон экранами, чтобы варьировать количество проникающего в него света, имитируя различную степень облачности. Но как бы он ни изменял условия, скворцы всегда выбирали правильное направление, если видели солнце непосредственно.

Крамер, конечно, был знаком с ранней работой Белинг, показавшей, что пчел можно научить искать пищу в определенном направлении. А что, если попробовать таким же образом обучать птиц?

Исследователь строит круглую дрессировочную клетку, которая так же, как и первая, выглядит изнутри абсолютно симметричной. Но снаружи вокруг клетки он равномерно разместил двенадцать совершенно одинаковых кормушек, прикрытых резиновыми мембранами с прорезями. Пока птица не просовывала клюв сквозь прорезь, она не знала, в какой из кормушек лежит зерно.

Теперь Крамеру нужно было обучить птицу искать пищу в одной какой-нибудь стороне клетки. Он выбрал для этого восточную кормушку и в семь часов утра насыпал в нее зерно. Птица проявила большую настойчивость и после серии попыток обнаружила, что пища лежит только в восточной кормушке. Через 28 дней обучения (дрессировка проходила от 7 до 8 часов утра) скворец усвоил урок.

Пришло время решительной проверки. Крамер перенес клетку на десять километров и в 17.45 насыпал зерно в восточную кормушку. Как теперь поведет себя птица?

Во время утренних дрессировок солнце находилось чуть-чуть правее восточной кормушки. Теперь же, к концу дня, оно было позади западной. Будет ли птица и сейчас искать пищу в восточной кормушке или повернет за ней в направлении солнца? Крамер напряженно ждал. Скворец немного пометался по клетке, видимо, в нерешительности, а затем, ошибившись всего один раз, повернулся к восточной кормушке.

Итак, птица каким-то образом знала, что для того, чтобы найти восток утром, надо двигаться по направлению к солнцу, а в конце дня - так, чтобы солнце оставалось непосредственно сзади!

Чтобы еще более утвердиться в своих выводах, Крамер придумал исключительно изящный эксперимент. Прежде всего он обучил скворца находить пищу независимо от времени дня в западной кормушке. Затем он закрыл клетку защитной ширмой от настоящего солнца и осветил ее искусственным солнцем, но так, что свет падал все время с одной и той же стороны - с запада.

Рис. 33. Установка Крамера для изучения выбора скворцом направления при фиксированном положении «солнца» (С) (вверху). Сначала скворца обучали искать пищу при открытом небе (а) в кормушке (П), находящейся в западном секторе клетки (К). Затем загораживали клетку защитным экраном (Э) от настоящего солнца и включали фиксированное «солнце». И птица, принимая искусственное «солнце» за настоящее, искала пищу в восточной кормушке утром (б), в северной - в полдень (в) и в западной - в конце дня (г).

Что будет делать бедная птица при таком «солнце», которое непрерывно светит с одной и той же стороны? К удивлению сгоравшего от нетерпения Крамера, скворец отнесся к этому светилу, как к настоящему, то есть повел себя так, словно «солнце» перемещалось, как ему и положено, по небосводу. Поскольку он был обучен искать пищу в любое время дня в западной кормушке, он искал ее в восточной кормушке в 6 часов утра, в северной - в полдень и в западной - в 17 часов.

Можно ли было теперь сомневаться в том, что эта птица с темными переливающимися перьями могла определять время дня с точностью до минуты?

Вот о таких удивительных открытиях сообщил Крамер научному миру в начале 50-х годов. И хотя эти открытия очень быстро принесли ему мировую известность, сам он смотрел на свои достижения глазами непредубежденного человека. Предстояло сделать еще очень много, чтобы выяснить, как же именно ориентируются птицы.

Поскольку он показал, что птица определяет направление, ориентируясь по солнцу и учитывая его суточное перемещение, можно было считать, что она обладает солнечным компасом, которым пользуется точно так же, как штурман магнитным компасом для прокладывания курса. Но это было лишь частичным решением проблемы. Ведь человек для определения направления должен иметь еще и карту, а также знать свое местоположение на этой карте. Значит, для того, чтобы достигнуть конечной цели перелета, птице тоже необходимо располагать какой-то картой. Но о такой карте пока никто не знал. И Крамер обращается к литературе. Один из английских исследователей, Джеффри Мэтьюз, долгое время изучал поведение почтовых голубей и написал после этого пространную монографию о навигации птиц. Она заинтересовала Крамера, который очень скоро понял, сколь многое обещала ему разработанная Мэтьюзом техника эксперимента. Мэтьюз выпускал почтовых голубей, предварительно унесенных от голубятни в специально выбранное для этого место (открытые равнины с одинаковой видимостью во все стороны), и следил за направлением их полета в бинокль до тех пор, пока птица не скрывалась из виду. Эти наблюдения тщательно сопоставлялись со сроками возвращения птиц к гнезду.

Учитывая результаты Мэтьюза, Крамер наметил широкую программу собственных экспериментов, которую он, к сожалению, не смог осуществить.

В поисках хорошо ориентирующихся птиц он начал отлавливать диких голубей в горах Калабрии, на юге Италии. 4 апреля 1959 года во время одного из восхождений он сорвался и погиб.

Густав Крамер неоспоримо доказал, что птицы способны ориентироваться по положению Солнца на небосводе с внесением поправок на его перемещение. И объяснялось все это единственным способом - птицы имеют собственные часы. Причем настолько точные, что сравнить их можно разве что с хронометром, которым пользуются штурманы.

Рис. 34. Густав Крамер выпускает почтовых голубей с башни старого Гейдельбергского замка около Гессена.

Из книги Заводи кого угодно, только НЕ КРОКОДИЛА! автора Орсаг Михай

Чем кормить птиц! С таким вопросом ко мне частенько обращались по телефону или лично и знакомые, и совершенно посторонние люди. Случается, что в квартиру залетела какая-нибудь птица или вы подобрали выпавшего из гнезда хилого птенца, а то и взяли под свою опеку взрослых

Из книги Основы зоопсихологии автора Фабри Курт Эрнестович

Облигатное научение и ориентация Рассмотрим сначала некоторые процессы, связанные с начальной ориентацией у детеныша. У всех животных здесь первостепенное значение имеют таксисы, которые, как уже было показано, у высших животных дополняются и обогащаются элементами

Из книги Семь экспериментов, которые изменят мир автора Шелдрейк Руперт

Раннее факультативное научение и ориентация Уже в раннем ориентировочном поведении заметно сказываются индивидуальные особенности животного. В большой степени индивидуальные различия в поведении зависят от частоты и характера осуществленных с момента рождения

Из книги Эволюционно-генетические аспекты поведения: избранные труды автора Крушинский Леонид Викторович

Ориентация Уже на примерах кинезов мы видели, что градиенты внешних раздражителей выступают у простейших одновременно как пусковые и направляющие стимулы. Особенно наглядно это проявляется при клинокинезах. Однако изменения положения животного в пространстве еще не

Из книги Новейшая книга фактов. Том 1 [Астрономия и астрофизика. География и другие науки о Земле. Биология и медицина] автора

ОПРЕДЕЛЯЮТ ЛИ ГОЛУБИ ДОРОГУ К ДОМУ ПО СОЛНЦУ В 50-е гг. главенствующей гипотезой в отношении навигационных способностей голубей была теория “солнечной дуги”, выдвинутая Дж. В.Т. Мэтьюзом. Он предположил, что птицы использовали комбинацию высоты подъема солнца над линией

Из книги Причуды природы автора Акимушкин Игорь Иванович

Изучение поведения птиц Поведение птиц имеет ряд специфических черт, связанных с особенностями их экологии и строения высших отделов мозга.Передвижение по воздуху обусловило необходимость быстрой адаптации птиц к различной географической среде, особенно во время

Из книги Спутник следопыта автора Формозов Александр Николаевич

Из книги Живые часы автора Уорд Ритчи

Пилот, берегись птиц! Такой "дорожный знак" стоило бы повесить на всех воздушных трассах, пересекающихся с трассами перелетов птиц.Сколько летает человек, столько длится конфликт самолетов и птиц. Начало его зарегистрировано в 1910 году. Аэроплан пролетал над заливом

Из книги Новейшая книга фактов. Том 1. Астрономия и астрофизика. География и другие науки о Земле. Биология и медицина автора Кондрашов Анатолий Павлович

ЗИМНИЕ СЛЕДЫ ПТИЦ

Из книги Проблемы этологии автора Акимушкин Игорь Иванович

12. Навигационные способности птиц Открытие способности птиц ориентироваться по солнцу изумило ученых, но то, что во время ночных пролетов птицы ориентируются по звездам, буквально потрясло их. Это было доказано через несколько лет после открытия Крамера молодыми

Из книги Происхождение мозга автора Савельев Сергей Вячеславович

В каком месяце Земля ближе всего к Солнцу и в каком наиболее удалена от него? Самая близкая к Солнцу точка орбиты любой планеты называется перигелием, самая удаленная – афелием. Для Земли расстояние в перигелии составляет 147 117 000 километров, в афелии – 152 083 000 километров. В

Из книги Мир животных. Том 3 [Рассказы о птицах] автора Акимушкин Игорь Иванович

Брачные игры птиц Весной самцы горихвосток прилетают к нам раньше самок. Они находят подходящее дупло или какую-нибудь уютную нишу, в которой можно устроить гнездо. Оберегают свою находку от других претендентов. Чтобы привлечь внимание самки, самец вывешивает время от

Из книги Мир животных автора Ситников Виталий Павлович

§ 41. Биологическое разнообразие птиц Разнообразие птиц необычайно велико (см. рис. III-11). Современные птицы достигают массы 165 кг (африканский страус). Существуют и необычайно мелкие виды, едва достигающие нескольких граммов (колибри). Палеонтологическая летопись

Из книги автора

Берегите хищных птиц! Несколько лет назад на страницах журнала «Охота и охотничье хозяйство» шла дискуссия, значение которой в полной мере будет оценено только потомками.Все началось со статьи профессора Г. П. Дементьева «Нужно ли истреблять хищных птиц?».Профессор

Из книги автора

Отряды птиц 1. «Древо жизни» класса птиц по Фишеру и Петерсону. 2. «Древо жизни» класса птиц по Фишеру и Петерсону. 1. Отряд воробьиных птиц. 2. Отряд воробьиных птиц.

Пожалуй, самая обширная, представительная и в то же время прекрасная, удивительная и малопознанная до загадочности категория представителей фауны нашей планеты – это птицы. Кажется, всё перед глазами, то есть над головой, но до сих пор не все тонкости их существования открыты и изучены.

Несмотря на то, что отряд птиц населяет Землю около 160 миллионов лет (предшественниками птиц были птеродактили), мало что известно о сезонной миграции этих существ, об их длительных перелётах. А главное –об уникальной возможности ориентации на огромном пространстве земного шара.

Читая не такие уж и многочисленные издания и научные исследования, можно сделать вывод, что исследованиями именно ориентации птиц в перелётах учёные стали заниматься всего около сотни лет назад. И до сих пор нет однозначных и конкретных ответов на все интересующие вопросы. В основном информация на уровне гипотез.

Впрочем, это не удивительно. Считается, что наша цивилизация прошла только 5-7 процентов своего существования, и такой же путь за плечами науки и других отраслей познания.

Отмечу, что лично мне пришлось два десятка лет заниматься радиолокационным и визуальным контролем за воздушным пространством, объектами обнаружения в котором достаточно часто были именно птицы как воздушные цели. Так что определённое представление об этой теме имею.

Конкретно об ориентации перелётных птиц в их полётах

Известно, что далеко не все пернатые остаются зимовать в местах обитания. Как пел Владимир Высоцкий , «всё стремится к теплу от морозов и вьюг». Хотя это мнение барда ныне оспаривается учёными-оппонентами.

Оставим пока тот факт, что не все пернатые летят на юг. Некоторые виды предпочитают северные окраины континента. Но согласитесь, способность ежегодно с завидной настойчивостью преодолевать два раза в год десятки тысяч километров и не ошибаться желаемым «аэродромом» вызывает порою изумление. Ведь нет у птиц, как у их конкурентов – созданных руками человека летательных аппаратов, ни современного навигационного оборудования, ни наземных систем слежения и контроля за полётами, способных в любое время определиться с местом нахождения, сверить курс и откорректировать маршрут.

Что же по птичьей навигации можно сказать?

Вариантов исследователями выдвигалось много. Это визуальная ориентация по особенностям местности, инфраструктуре, дорогам железным и шоссейным, городам. Что ж, это, возможно, и соответствует действительности, но, прежде всего, для оседлых, относительно далеко не улетающих птиц. Затем по солнцу, луне, звёздам и их расположению, другим постоянно существующим факторам. Однако как основные многие из этих гипотез рано или поздно отвергались не столько из-за разнообразия видов птиц, сколько из-за ещё большего разнообразия особенностей их поведения.

Ныне преобладающей, с развитием науки, стала гипотеза, что ориентация и навигация перелётными птицами производится с использованием магнитного поля планеты, которое существует между полюсами. Сие суждение впервые было высказано более 100 лет назад русским академиком А. Миддендорфом . Вначале оно имело успех, а затем его то признавали, то отрицали, не предлагая ничего существенного взамен. Ибо при тех методах, которыми тогда пользовались для проверки, идея не могла быть ни доказана, ни опровергнута.

Опыты в основном проводили на голубях, которые, как известно, не являются перелётными птицами. К голове, лапкам или крыльям птиц прикрепляли маленькие магнитики, чтобы узнать, как они действуют на полёт. Нормальный полёт из-за этого нарушался, но никакого ответа на возникающие вопросы получить было нельзя.

В настоящее время геомагнитная ориентация птиц в направлении полёта (наряду с другими ориентирами) якобы доказывается теоретически и экспериментально. Интересно, что на командных пунктах радиотехнических войск, как документ, висит «Карта орнитологической обстановки» с нанесёнными сложившимися маршрутами полёта птиц. Что стоит отметить, основной маршрут перелётных птиц, начинающийся в районе Бреста, идёт на северо-восток республики, где, похоже, птицы собираются в большие стаи, подкармливаются на дальнюю дорогу, а затем следуют в южном направлении. Однако это основывается на обобщённых многолетних наблюдениях. И только.

Обратимся к исследованиям более современного периода

В зоологическом институте во Франкфурте-на-Майне малиновок помещали в большую камеру, внутри которой создавались искусственные магнитные поля. С помощью этих полей можно было компенсировать геомагнитное поле или создавать другие его напряжённости. От всех других внешних ориентиров птицы были изолированы.

При нормальном геомагнитном поле птицы правильно выбирали направление для миграционного полёта. При ослаблении поля в 2-4 раза или усилении в два раза подконтрольные беспорядочно метались по камере, потеряв всякую ориентацию. Собирались вместе вновь лишь вне пределов зоны излучения. Подобные нарушения навигационных способностей у перелётных птиц наблюдаются и во время сильных магнитных бурь.

Кстати, насчёт чувствительности птиц к радиоизлучениям сверхвысоких частот. Если кто не знает, воздушные цели, к коим относят и обнаруживаемые плотные стаи птиц, на экранах радиолокационных станций имеют отметку, схожую с отметкой реальной малоскоростной цели, например воздушных шаров, вертолётов, легкомоторной авиации, метеообразований или ещё чего-то подобного.

Одним из проверенных способов распознавания типа «птицы или цель» является облучение этой цели прямым излучением РЛС, в частности радиолокационным высотомером. После некоторого времени интенсивного облучения, если цель – это стая птиц, она рассыпается. Вот так на практике и распознают стаи птиц.

А недавно биологи впервые выдвинули и обосновали версию, как перелётные птицы чувствуют магнитное поле.

«Есть две гипотезы , – объясняет Дмитрий Кишкинев , сотрудник одного из университетов Канады, – магнитная и ольфакторная (обонятельная). В настоящее время учёные активно ищут органы магниторецепции, которые могут служить птицам внутренним компасом. По одной версии, у птиц в сетчатке глаз есть определённые фоторецепторы, которые могут видеть магнитное поле. Было вроде как доказано, что чувствительность к магнитному полю завязана на зрение. Считается, что сетчатка содержит светочувствительные белки – криптохромы, которые под воздействием света и магнитного поля могут по-разному возбуждаться в зависимости от ориентации его силовых линий. Второй вариант предполагал, что у птиц в надклювье есть магниточувствительный орган – 15 лет назад там были найдены клетки, содержащие большое количество оксида железа. Учёные тогда решили, что это и есть искомый магниторецептор, соединенный с мозгом птицы тройничным нервом».

На этом тогда и остановились

Почему? Да потому, что досконально органы птиц в разрезе разрешения интересующих вопросов практически не изучены. Учёные разделяют способность в ориентации (выбору направления) птиц и навигации – умение не только поддерживать строгое направление движения, но и представлять своё истинное местоположение относительно цели.

Благодаря экспериментам, которые ведутся с 60-х годов, учёные полагали, что ориентироваться птицы могут несколькими способами.

Научные сотрудники под руководством Кишкинева ловили камышовок на биологической станции Рыбачий (Куршская коса, Калининградская область) весной, когда птицы летят на север. По данным кольцевания, биологи знают, что эти птицы должны лететь для гнездования либо в Прибалтику, либо в северо-западную часть России (в Ленинградскую область, Карелию), либо на юг Финляндии. Пойманных птиц самолётом привезли в Москву, и часть из них была прооперирована: одной половине камышовок перерезали тройничный нерв, а другой произвели такой же надрез клюва, но без перерезания нерва. Это делалось для того, чтобы исключить влияние на навигацию птиц самого факта операции на клюве.

Чтобы узнать, как повлияет операция на навигацию птиц, их привезли на биостанцию МГУ под Звенигородом, но выпускать их по каким-то причинам не стали. Для изучения миграционного поведения птиц был использован метод с клеткой Эмлена . Она представляет собой конус с сеткой наверху, через который птица может видеть звезды. Суть метода в следующем: в сезон миграции птицу сажают в эту клетку, и, когда у неё начинается миграционный «драйв», она начинает прыгать и оставлять на стенках конуса следы в том направлении, куда ей надо лететь по природному зову. Эксперимент, результаты которого были опубликованы в научной прессе, показал, что птицы с перерезанным нервом не чувствовали, что их перевезли, – они продолжали ориентироваться на северо-восток, считая, что они по-прежнему в Калининградской области. А ложно оперированные птицы поняли, что находятся за тысячу километров от места поимки, и скомпенсировали направление с северо-восточного на северо-западное.

Учёные считают, что перерезанный нерв передавал в мозг птицы некоторую информацию, скорее всего по магнитному полю, о её текущем местоположении на поверхности Земли. Но, чтобы знать своё местоположение, птице либо надо иметь в себе «сетку» магнитного поля Земли либо знать характер его изменения по долготе и широте.

Но где эта «сетка» и как знать изменение поля?

«Мне кажется, вариант с сеткой очень сложный, ведь природа всегда выбирает менее точные, но простые механизмы. Скорее всего, птицы чувствуют, что при перемещении напряжённость поля слишком растёт, и при превышении некоторого порога, который генетически задан, у птицы включается “аварийный план”. Вместо режима “лететь на северо-восток” её бортовой компьютер переключается в режим “лететь на северо-запад», – пояснил автор исследования.

Так что этот эксперимент можно было считать незавершённым. Тем более что сами магнитные рецепторы в надклювье до сих пор не найдены; более того, последние исследования показали, что железосодержащие клетки являются не нервными, а макрофагами, потребляющими бактерий. И такие клетки найдены не только в клюве, но и в других тканях.

То есть налицо мы имеем ситуацию, сложившуюся не в пользу современной мировой науки: множество наблюдений подтверждают, что пернатые прекрасно ориентируются, в особенности в ходе длительных сезонных перелётов на огромные расстояния – пролетая над обширными океанскими просторами без визуальных «контрольных точек», не только по магнитному полю Земли, но и корректируя свои маршруты с учётом магнитного склонения, то есть делая поправку на угловые расхождения направлений географического и магнитного полюсов Земли. А вот найти биологический механизм определения этих магнитных меридианов, то есть пресловутый «птичий компас», и выяснить принцип его работы человек пока не в состоянии.

Зато появилась очередная смелая и неожиданная версия. Если «миграционное беспокойство» – одна из важных причин начала миграции птиц, то возникает вопрос: не является ли непосредственным стимулом к перелётам повышение магнитной активности (примерно вдвое), которое происходит на Земле дважды в году – в периоды весеннего и осеннего равноденствия – в периоды их (птиц) миграции?

Вот и всё, что можно сказать на сегодняшний день. Гипотезы есть, а пойти дальше человек, «царь природы», пока не может.

Просто некоторая информация

Обыкновенная крачка покинула своё гнездо в Финляндии около 15 августа 1996 года и была поймана 24 января 1997 года в Австралии. Она пролетела 25 750 км. Высота полёта обычно не превышает 3 тысяч метров, однако отмечались случаи набора высоты до 6 300 метров (радарные измерения).

Основные пути миграции из европейской части России: из почти двух сотен видов улетающих птиц 16 отправляются в Австралию, 16 – в Северную Америку, 5 – в Южную, 95 – в Африку.

Лебеди, аисты, журавли и гуси летят семьями или крупными сообществами. Аисты во время длительных перелётов периодически могут засыпать на лету на 10–15 минут.

Стаю, как правило, возглавляет самая опытная птица – вожак, уже летавшая по этому маршруту. Однако были замечены случаи замены вожака в полёте летевшими следом «заместителями», а также слияния двух клиньев в один. Причём было заметно, что происходило это в случаях, когда часть птиц уставала в полёте и они начинали вываливаться «из строя». И напрашивался вывод, что временное слияние клиньев делалось для моральной поддержки уставших. Было заметно, что более сильные птицы как бы вталкивали ослабевших в строй. Через некоторое время выровненные клинья вновь делились на несколько и продолжали уже нормальный полёт.

И ещё нечто невероятное

В подразделениях, обеспечивающих полёты авиации и управления ею, на вооружении у нас были приводные радиостанции типа ПАР-8 (затем более современные системы). Эти системы представляют собой передатчик средневолнового диапазона, излучающий код Морзе. Причём набор знаков устанавливается индивидуальным для каждого конкретного радиопривода.

Антенна представляла четыре параллельных троса-излучателя, расположенных на высоте на мачтах. Эта антенна формировала в противоположных направления две диаграммы направленности, то есть два луча. И самолёт, принявший именно этот набор, ориентируясь на максимум излучения, выходил именно на этот привод. И в периоды сезонных перелётов, в частности, журавлей, мы каждый раз замечали, что стаи выходили прямо на наш привод, а затем корректировали дальнейшее направление полёта.

Несмотря на то, что в шести километрах от нашего небольшого подразделения был расположен центральный городок, весьма обширный, с трёх-четырёхэтажными зданиями, трубами и прочим, который мог служить намного более контрастным визуальным ориентиром. Получается, что птицы улавливали излучение привода?

Стоит отметить, что на этих антенных тросах на ночёвку останавливались стаи более мелких птиц. Благо прочность позволяла. А после ночного отдыха полёт продолжался. Возможно, находить такое нетрадиционное место отдыха в темноте им также помогало излучение радиопривода. Стоит сказать, что деревьев вокруг не было, местность пустынная, а высоковольтная линия, тогда ещё не подключённая, находилась в стороне от птичьих трасс и их, видимо, не устраивала.

Часть моих однокашников по выпуску получила распределение на флот, в частности на корабли командно-измерительного комплекса, обеспечивающие постоянное наблюдение за космическими объектами. В том числе и обитаемыми. Ребята рассказывали о случаях, когда стаи птиц, обычно в ненастную погоду, находили посреди океанов (по радиоизлучению корабельных средств?) эти судна и, чтобы не погибнуть, буквально облепливали их палубы, оборудование и надстройки. И после того как распогодится, подкормленные моряками, возобновляли полёт. Предварительно делая вокруг корабля прощальный облёт. Естественно, кроме тех, кто погибал. Подобное рассказывали и моряки других военных судов. Орнитологи такой облёт считают не знаком благодарности, а проверкой крыльев и способности стаи продолжать полёт.

И пока птицы не будут досконально изучены, пока не будет создан эффективный, хотя бы в виде действующего макета, махолёт как действующая копия птицы, видимо, гипотезы так ими и останутся.

Лучше всего, если мы сразу признаемся, что не знаем точного ответа. Разумеется, кое-что нам все же известно, но наша теория не всегда выдерживает проверку.

Способность перелетных птиц к ориентации поразительна. Вдумайтесь сами: ласточка по одним лишь ей ведомым приметам прилетает в Африку! Но самое удивительное заключается в том, что живущая в наших краях ласточка (а это убедительно доказало кольцевание птиц) возвращается из Африки домой. Не только в Венгрию, но даже в ту самую деревню, откуда она пустилась в дальний путь, к тому самому дому, под крышей которого она свила гнездо. Можно сказать, что все эти чудеса объясняются работой некоего таинственного внутреннего механизма. Мы называем механизм ориентации таинственным, потому что еще не сумели раскрыть его тайну.

Самая распространенная теория ориентации состояла в том, что птицы обучают маршрутам перелетов себе подобных. Маршрут передается из поколения в поколение: старшие летят во главе стаи, младшие следуют за ними и со временем сами обретают способность находить дорогу домой или к местам зимовки. В основном это верно: тому есть примеры. Но начнем с "контрдовода"- с кукушки. Всем известно, что кукушка не знает своих истинных родителей: взрослая кукушка откладывает яйцо в чужое гнездо, и выращиванием птенца занимаются птицы других видов. Осенью кукушки улетают в Африку или в тропические леса Южной Азии. Но удивительнее всего, что потомство пускается в путь позже, когда кукушки старшего поколения находятся уже в пути. Они летят без вожаков, и никогда не ошибаются в выборе маршрута. Их ведет врожденный инстинкт.

Как выбирают маршрут перелета аисты? Следуют за старшими или руководствуются врожденным инстинктом? Выяснением этого вопроса занимался немецкий орнитолог Шюц. Он поставил весьма остроумные эксперименты. Аист-птица крупная, и сравнительно легко удалось установить, что западноевропейские аисты совершают перелеты по одним, а восточноевропейские - по другим маршрутам. Аисты летают планируя, они любят восходящие воздушные потоки и поэтому не срезают путь, прокладывая маршрут напрямик через море, а стремятся пересечь его в узких местах. Европейские аисты стремятся попасть кратчайшим путем в Африку. Восточноевропейские аисты летят через Босфор, а западноевропейские пересекают море у Гибралтара. Требовалось выяснить, обучаются ли аисты навигационному искусству у старших или же маршрут им подсказывает врожденный инстинкт.

Для своего первого опыта Шюц взял восточноевропейских аистов. Из гнезд он выбрал по птенцу и выкормил их сам. На волю Шюц выпустил птенцов лишь после того, как старшие аисты улетели. Молодым аистам не оставалось ничего другого, как проложить маршрут самим, без опытного вожака, и они успешно справились с задачей, избрав тот же маршрут в Африку, что и их родители. Несколько аистов было поймано в Греции: очевидно, они не сумели найти кратчайший путь через море в районе Босфора. Но направление полета в основном было выбрано верно. Значит, аистов вел врожденный инстинкт.

Затем Шюц поставил новый опыт. На этот раз он взял 754 птенца восточноевропейского аиста, отвез их на запад и предоставил выкармливать местным аистам. Сообщения удалось получить почти о 100 окольцованных птенцах: вместе со старшими они проследовали через Средиземное море по западному маршруту - у Гибралтара. Влияние старших на выбор направления оказалось сильнее, чем врожденный инстинкт.

После этого Шюц поставил еще более интересный опыт. Он увез на запад птенцов восточноевропейского аиста и там выкормил их. На волю Шюц выпустил птенцов, когда местные аисты старшего поколения уже улетели. Молодые аисты отправились было сначала в юго-западном направлении, затем повернули на юго-восток, т. е. полетели по традиционному маршруту своих предков. Из опытов Шюца следовало, что аистам подсказывает маршрут перелета врожденный инстинкт, руководствуясь которым, летали их родители. Если же поблизости оказывались аисты старшего поколения, то маршрут выбирался под влиянием вожака стаи, а им был аист старшего поколения. Следовательно, влияние старших подавляло выбор маршрута, диктуемый врожденным инстинктом.

До сих пор мы говорили о том, что перелетные птицы умеют ориентироваться, т. е. так или иначе находить дорогу к местам зимовки, а затем обратную дорогу домой. Как они ориентируются? Мы видели, что известную роль играет обучение, но не все здесь до конца ясно.

Императорские пингвины (Aptenodytes)

Есть основания полагать, что птицы ориентируются так же, как моряки. Что необходимо капитану парусного судна для того, чтобы в открытом море проложить правильный курс и прийти в порт назначения? Прежде всего для этого необходим высокоточный прибор, известный под названием секстанта и позволяющий измерять высоту солнца над горизонтом. Однако одного лишь секстанта недостаточно, так как высота солнца зависит от времени года. Необходимы специальные таблицы. Еще капитану понадобятся точные часы - хронометр: положение солнца на небосводе непрестанно изменяется с утра и до вечера. Разумеется, ни один капитан судна не обрадуется столь скудному выбору навигационных средств, но любой судоводитель в случае необходимости смог бы проложить курс с их помощью.

Выяснилось, что перелетные птицы днем ориентируются по высоте солнца, т. е. пользуются своими естественными "навигационными приборами". Разумеется, никаких "биологических секстантов" и "биологических хронометров" у птиц нет. Это доказал своими опытами в первую очередь Крамер.

Он посадил скворцов в сферическую камеру, опирающуюся на кольцеобразную подставку. Камеру можно было по желанию затемнять и освещать. Если светило солнце, то скворцы ориентировались так же, как во время полета: они выдерживали направление движения или стремились вырваться на свободу в ту сторону, куда летели бы, не будь на их пути стенки. Но стоило затемнить камеру, как скворцы утрачивали способность ориентироваться и не могли выдержать направление движения.

Затем Крамер раздвинул шторки. Скворцы могли снова видеть солнце сквозь стеклянные окошки, на этот раз заклеенные папиросной бумагой. Свет был таким, как в тумане. Но это не мешало ориентироваться скворцам, они точно "знали" свой маршрут и бились о стенку камеры, стремясь продолжить полет в правильном направлении.

В следующем опыте Крамер зашторил окошко, обращенное к солнцу, и одновременно с противоположной стороны поставил зеркало, отражавшее солнечные лучи. Скворцы изменили направление полета на противоположное: ведь теперь они ориентировались по зеркальному отражению солнца! Так было доказано, что солнце влияет на способность скворцов ориентироваться в пространстве и даже что скворцов можно обмануть.

Некоторые перелетные птицы "путешествуют" по ночам . Сразу же возникает мысль о том, что они ориентируются по звездам. Такое предположение менее вероятно, поскольку свет звезд не столь интенсивен, как солнечный. К тому же, чтобы ориентироваться по звездам, необходимо основательно знать небосвод, чтобы уметь распознавать отдельные звезды и созвездия, да и наблюдать приходится не один сильный источник света, а множество слабых.

Заслуга в решении этого вопроса принадлежит немецкому орнитологу Зауэру. Для своих опытов он выбрал славку - неприхотливую певчую птицу размером меньше воробья. Зауэр содержал славок в неволе в таких условиях, что они вообще не видели естественного света. С того момента, как они вылуплялись из яиц, птенцы славки жили только при искусственном освещении. Опыт Зауэра показал, что жившие в неволе птицы осенью и весной, когда их свободные родичи совершали свои сезонные перелеты, приходили в состояние сильного возбуждения. "Биологический календарь" как бы говорил им: настала пора пускаться в путь.

Затем Зауэр поместил славок в клетки, полностью закрытые со всех сторон стеклом. Птицы могли видеть звездное небо. Теперь осенью и зимой, т. е. во время перелетов, подопытные славки стремились вырваться из клеток на север в том направлении, в котором улетают славки на волю.

Результат, полученный Зауэром, был особенно убедительным, поскольку орнитолог экспериментировал со многими видами славок. Гаичка, садовая и полевая славки стремились лететь на юго-запад, а малая славка - на юго-восток. Именно в этих направлениях летят осенью соответствующие виды, отправляясь на зимовку в Африку. Опыт Зауэра показал, что птицы ориентируются по звездному небу.

Затем экспериментатор перенес птиц в планетарий, где специальный аппарат проектирует на огромный яйцевидный купол светлые пятнышки, яркость, размеры и положение которых в точности соответствуют звездам и созвездиям на небосводе. (Зауэр поместил в планетарий стеклянные клетки с птицами.)

Первый из таких опытов проводился осенью. Сначала птицам показали "правильное" ночное небо - такое, какое они увидели бы, находясь на воле, и малая славка настойчиво стремилась вырваться из клетки в том направлении, в каком улетают на зимовье славки на воле. Но вдруг картина ночного неба изменилась: опыт производился в планетарии, и стоящий в центре зрительного зала специальный проекционный аппарат (планетарий) позволял с легкостью воспроизводить на своде ночное небо, видимое в любом месте на земле в любое время года. Теперь птицы видели звездное небо таким, как если бы находились не во Фрейбурге (где производились опыты), а в районе озера Балхаш. (За один час Земля поворачивается вокруг своей оси на 15° географической долготы, а наблюдателю, находящемуся на Земле, кажется, что небосвод поворачивается с такой же скоростью, но в противоположном направлении.)


Одна из интереснейших проблем, касающихся поведения животных, – это вопрос о том, каким образом животные находят путь при миграциях на дальние расстояния. Хотя способность к навигации обнаружена у многих видов позвоночных, в наибольшей степени она проявляется у птиц при их перелетах на большие расстояния, что и по сей день остается самым непонятным явлением в поведении животных. Расстояния, которые птицы преодолевают при этом, огромны: например, полярная крачка размножается в Арктике, а зимует в Антарктике. Точность ориентации птиц также впечатляюща: они могут перелетать на другой континент, возвращаясь всегда на одно и то же место. Хотя такие перелеты вызывают множество интересных вопросов, все же наиболее важен вопрос о том, как птицы находят свой путь.

Типы ориентации

Существуют разные способы ориентации. Гриффин предложил для этого следующую классификацию:

Ориентация по странам света – способность двигаться в направлении определенной страны света без каких-либо ориентиров. Некоторые виды птиц для определения направления полета используют различные ключевые стимулы. Если бы эти птицы ориентировались только по странам света, то отклонение от правильного курса по долготе привело бы к тому, что в конце концов они оказались бы далеко от их настоящей цели, так как они не смогли бы внести поправку на подобное смещение.

Истинная навигация – способность ориентироваться в направлении определенного места (цели) без соотнесения с ориентирами на местности. Животное, обладающее такой способностью, может внести поправку на отклонение от курса по долготе и прибыть в нужное место.

Возможные ключевые стимулы

Истинная навигация представляет собой наиболее яркий пример способности птиц ориентироваться в пространстве. Рассмотрим ключевые стимулы, которые при этом могли бы использоваться.

Звезды . Поскольку люди могут ориентироваться по звездам, естественно было предположить, что и птицы используют звезды для навигации. Эта гипотеза была четко сформулирована Зауэром. Эмлен подвел итоги большой исследовательской программы по изучению ориентации с помощью звезд у овсянки – певчей птицы, которая размножается на востоке Соединенных Штатов, а зимует в Центральной Америке и на Карибских островах. Эмлен разработал простой, но остроумный способ определения предпочтительного направления в ориентации птиц. Каждая из птиц содержалась в специальной клетке, на полу которой лежала пропитанная чернилами подушечка. Боковые стенки клетки были закрыты белой фильтровальной бумагой, сложенной в виде расширяющейся кверху воронки. Помещенная в такую клетку птица видит только то, что находится непосредственно над ней. Когда птица становится активной и начинает подпрыгивать вверх, чернила с ее лап отпечатываются на фильтровальной бумаге, благодаря чему осуществляется постоянная регистрация ее движений. Если птиц в таких клетках содержали на открытом воздухе, то осенью их движения были направлены на юг, а весной – на север.

Для более полного изучения, способности к ориентации у перелетных птиц Эмлен вслед за Зауэром провел исследования в планетарии. Он обнаружил, что направление, в котором предпочтительно ориентировались овсянки, варьировало в зависимости от их физиологического состояния. Изменяя длину дня, он мог одновременно исследовать две группы птиц: одну в «осеннем» состоянии, а другую – в «весеннем». Результаты соответствовали ожидаемым: хотя все опыты проводились в мае, у птиц, находившихся в осеннем физиологическом состоянии (вследствие укорочения длины дня), движения были ориентированы на юг, а у птиц в весеннем состоянии – на север.

Изменяя расположение звезд в планетарии, Эмлен обнаружил, что для определения направления птицы используют группу звезд, расположенных в пределах 35° от Полярной звезды. Поправку на время они не вносят. Каким же образом овсянки приобрели способность находить свой путь по звездам, лежащим рядом с Полярной звездой? Можно было бы думать, что это инстинктивное поведение. Для проверки такого предположения Эмлен исследовал ориентацию у трех групп птиц, выращенных человеком. Птицы, выращенные в условиях рассеянного освещения, обнаруживали осенью высокий уровень активности, но никакой определенной ориентации движений у них не наблюдалось. Способность к ориентации была, по-видимому, следствием научения. Другую группу выращенных человеком птиц в течение двух месяцев помещали каждую вторую ночь в планетарий, где имитировали нормальное вращение звездного неба. Эти птицы обладали нормальной способностью к ориентации на юг. С третьей группой проводили точно такой же двухмесячный опыт, как и со второй, но в этом случае звездное небо в планетарии вращалось вокруг звезды Бетель-гейзе, на которую впоследствии и ориентировались птицы этой группы. Эмлен высказал предположение, что молодые овсянки следят за движением звезд и узнают «северную» звезду по характеру вращения звездного неба. Какова же адаптивная роль эволюции системы, с помощью которой птицы научаются определенным способам ориентации? Эмлен отмечает, что при изменении направления земной оси меняются и полярные звезды. Таким образом, в результате длительной эволюции овсянки приобрели способность ориентироваться по наиболее подходящей звезде, хотя при изменении вращения Земли это будут разные звезды.

Солнце . Для определения ключевых стимулов, используемых птицами для ориентации в дневное время, была исследована способность голубей возвращаться «домой». Г. Крамер и его сотрудники показали, что птицы определяют направления сторон света по солнцу. Кроме того, птицы способны учитывать те изменения, которые происходят в положении солнца над горизонтом в течение дня (эти изменения составляют в среднем 15° в 1 ч). Птицы, содержавшиеся в условиях искусственного фотопериодизма, сдвинутого на 6 ч по отношению к естественному, при полете на открытом воздухе отклонялись на 90° от того направления, которое они выбрали бы, если бы ориентировались по солнцу.

Хотя ориентация, позволяющая птицам определять стороны света по солнцу с поправкой на время, быть может, и важна для навигации, она недостаточна для объяснения истинной навигации. Было предложено множество других, более сложных гипотез. Мэттьюз выдвинул гипотезу солнечной дуги, согласно которой птицы сравнивали высоту солнца, экстраполированную к высшей точке над горизонтом, с его высотой в тот же момент времени (определяемый по внутренним часам) у себя «дома». С помощью такого механизма можно было бы получать достаточно информации для выбора правильного направления. Исследование различных перцептивных способностей голубей показывает, что голуби воспринимают движение, подобное движению солнца. К сожалению, более поздние данные несовместимы с гипотезой солнечной дуги. Большинство исследователей, по-видимому, склоняется к гипотезе «карты и компаса» Крамера. Для навигации птица нуждается не только в компасе, который, как было показано, у нее есть, но и в карте. Хотя природа этой карты еще не установлена, результаты большого числа исследований, в основном связанных с изменением фотопериодов, Позволяют предположить, что при истинной навигации животные должны так или иначе сверять по какой-то «карте» полученную ими информацию о сторонах света.

Магнитные ориентиры . Так как некоторые птицы способны возвращаться домой в условиях значительной облачности, предположение об использовании в качестве ориентира солнца не может полностью объяснить, каким образом голуби находят дорогу при возвращении «домой». Данные о том, что птицы используют информацию о характере магнитного поля земли, представляются в настоящее время вполне убедительными. Китон прикреплял к телу голубей магниты или кусочки латуни, а затем исследовал их ориентацию. В ясные дни магниты не оказывали никакого действия. В пасмурные дни голуби с кусочками латуни (контрольные) обнаруживали хорошую ориентацию, тогда как у птиц с магнитами (искажавшими магнитное поле вокруг них) ориентация была случайной. Уолкот пошел дальше и прикрепил к голове голубя катушку Гельмгольца – устройство, генерирующее постоянное магнитное поле. И в этом случае изменение магнитного поля вызывало дезориентацию голубей, но только в пасмурные дни. Очевидно, в системе навигации голубей имеется избыточность: в ясные дни они используют в качестве ориентира солнце, а когда его не видно, переключаются на магнитные ключевые стимулы.

Обонятельные ориентиры . Как говорилось выше, голуби способны воспринимать и различать некоторые запахи. Группа итальянских исследователей (см., например, Papi et al., 1973) выдвинула предположение, что голуби находят дорогу домой по обонятельным раздражителям, вызвавшим у них когда-то своего рода «обонятельное запечатление», подобное тому, которое наблюдается у лососей. Хотя Папи и его сотрудники представили данные, свидетельствующие в пользу «обонятельной» гипотезы, существуют некоторые сомнения относительно их воспроизводимости, а также возможности использовать обонятельные стимулы при перелетах на большие расстояния.

Слухевые ориентиры . Гриффин и Хопкинс, измерив интенсивность звуков, издаваемых лягушками, на высоте 500 и 1000 м, высказали предположение, что естественные звуки (например, пение лягушек, звуки насекомых, шум волн или ветвей) могут служить для перелетных птиц ключевыми стимулами.

Заключение. Требуется дополнительное изучение сенсорно-перцептивных механизмов, лежащих в основе ориентации птиц при их миграциях на большие расстояния. Предположения о ключевой роли описанных выше и некоторых других стимулов находят как сторонников, так и противников. Ясно, что ориентироваться птицам помогает не один какой-то раздражитель, а скорее целый их комплекс, причем относительная важность каждого из компонентов варьирует у разных видов. Ориентация при перелетах на большие расстояния, безусловно, представляет собой один из наиболее ярких примеров сенсорно-перцептивного контроля поведения животных.



Как ориентируются птицы?

Вызывает изумление способность птиц определять, когда надо лететь в родные края. В долине Нила, где зимуют журавли, климатические условия в марте и в апреле почти одинаковые. Но ежегодно в начале апреля журавли строятся клином и прилетают на север как раз тогда, когда освобождаются от снега моховые болота, где они проводят свои весенние песни и пляски. Вальдшнепы зимуют там, где снега не бывает, но как только в лесу образуются первые проталины, длинноносый красавец уже тянет над макушками берез. А гуси! Как они знают, купаясь в теплых водах южного Каспия, что на родном Таймыре вот-вот вскроются озера и надо спешить, чтобы не потерять ни одного дня короткого полярного лета?

Скорее всего сигнал «к полету» им подает готовность их организма к размножению, но только ли эта причина дает толчок к началу весеннего перелета, пока еще никто не знает. Много орнитологов занималось изучением «навигационных приборов» птиц. Для объяснения их загадочной способности лететь куда нужно предложено множество гипотез.

Долгое время натуралисты считали, что дорогу молодым показывают старые опытные птицы, не раз совершавшие перелеты с севера на юг и с юга на север. Действительно, утки, гуси, журавли путешествуют косяками, состоящими из старых и молодых птиц. В этих случаях ведущая роль стариков очевидна. Однако детальное изучение перелетов методом кольцевания показало, что старые и молодые птицы далеко не всегда летят вместе. Выяснилось, что многие молодые воробьиные птицы направляются на юг раньше взрослых. У кукушек, наоборот, отец и мать рано улетают на зимовку и оставляют воспитывать птенцов приемным родителям, зимовки которых расположены совсем в других местах.

Так же поступают и некоторые буревестники. Они выводят птенцов в глубоких норах. Отец и мать вначале очень усердно кормят птенцов, и через несколько недель те настолько обгоняют в толщине своих родителей, что уже не могут выбраться из узких нор. Старых птиц это мало волнует, и, когда наступает время перелета, они оставляют разжиревших птенцов худеть в норах и отлетают к местам зимовок.

Во всех подобных случаях взрослые птицы не могли показать дорогу молодым, и они попадают в районы зимовок совершенно самостоятельно, руководствуясь только наследственным миграционным чутьем.

Путь птиц во время их осенних и весенних перелетов почти никогда не бывает прямым, обычно в дороге они делают не один поворот. Значит, в наследство от родителей они должны получить и вехи, отмечающие каждый поворот. Какие же вехи могут служить для птиц ориентирами?

У птиц отличное зрение. Во многих случаях зрительные ориентиры бесспорно могут помочь им найти правильную дорогу. В поисках пищи для птенцов родители иногда улетают очень далеко от дома и безошибочно возвращаются к гнезду. Здесь главную роль играют зрительные ориентиры - группа берез, высокая ель, овраг, озеро, хутор или деревня. Иногда пролетные пути птиц идут вдоль широких рек, высоких горных хребтов, по берегам морей и больших озер; здесь тоже может пригодиться зрительная ориентировка. Но что может увидеть перепел, пересекающий Черное море над самыми волнами, или мелкие певчие птички, летящие ночью над безбрежным океаном?

Орнитологи искусственно ставили птиц в такие условия, в которых им в выборе правильной дороги не могли помочь зрительные ориентиры. Однако увезенные на сотни и даже тысячи километров от гнезда птицы возвращались.

Одна вертишейка, например, была поймана на гнезде в Берлинском ботаническом саду. Ее окольцевали и увезли в Грецию. Через 10 дней она вернулась домой и уселась на гнездо.

А на острове Миду, расположенном вблизи Гавайских островов, поймали на гнездах 18 альбатросов. Их самолетом доставили в шесть различных пунктов Тихого океана, " находящихся от острова на расстоянии от 200 до 6500 километров. 14 птиц вернулось на гнезда, пролетая в среднем 2500 километров в сутки. А один альбатрос, завезенный за 6500 километров на Филиппинские острова, вернулся через 32 дня.

Конечно, ни о каких зрительных ориентирах здесь говорить не приходится. Тогда возникает вопрос: какими же навигационными приборами пользовались птицы?

Еще в XIX веке А.Ф. Миддендорф предположил, что при перелетах птицы могут ориентироваться по магнитному полю Земли. Ученых вполне устраивала такая гипотеза. Если она верна, то загадочный «птичий компас» найден. Начались опыты. Птиц помещали в искусственные магнитные поля различной силы - они никак не реагировали. Подвешивали им на шею, крылья, лапы миниатюрные магнитики, которые должны были изменить ориентировку, но птицы с магнитами и без них летели в одном и том же направлении. Магнитную гипотезу отставили. Но сейчас вновь раздаются голоса, что магнитное поле должно влиять на навигационные способности животных. Неудачи опытов объясняют их несовершенством. Кто прав, покажет будущее, но окончательно списывать со счета магнитную гипотезу пока еще преждевременно.

После неудачи с магнитной гипотезой появились новые. Высказывались предположения, что птицы ориентируются при миграциях по тепловому излучению, по электрическому полю, по силам, возникающим при вращении Земли, по разнице в освещенности небосвода на юге и севере. Некоторые орнитологи считали, что у птиц вообще нет никаких навигационных приборов и они находят верный курс путем проб и ошибок. Но правильность всех этих гипотез не удалось доказать, и они не получили широкого распространения.

Со временем стали подумывать: а не могут ли птицы ориентироваться по солнцу и другим небесным телам. На первый взгляд это кажется невероятным. Ведь для того, чтобы определить широту и долготу места, нужны сложные приборы - секстан, хронометр, - навигационные таблицы; а их-то у птиц никак не может быть.

Тем не менее их небесную ориентацию решили проверить. Для этого построили круглую клетку с прозрачным дном и сетчатым потолком, через которые можно было наблюдать поведение подопытных птиц. В центре клетки установили одну жердочку и несколько штук по краям. Опыты проводили со скворцами, выращенными в неволе отдельно от взрослых птиц. Наблюдение вели весной, когда птиц охватывает перелетное беспокойство и «вольные» скворцы в данной местности стремятся на северо-запад. Как показали опыты, скворцы в клетке тоже предпочитали северо-западное направление: они все время перелетали от центральной к северо-западной жердочке и обратно. Если клетку поворачивали вокруг оси, они все равно выбирали то же самое направление. Затем клетку затянули светонепроницаемой материей, оставив только шесть окошек, через которые птицы могли видеть большую часть неба. Скворцы продолжали перелетать в том же направлении. Тогда к окошечкам приделали дверцы с зеркалами, которые при определенном повороте смещали видимые участки неба на 90°. Теперь скворцы стали перепархивать с центральной жердочки на юго-западную, то есть изменили направление как раз на тот же угол. Такое поведение скворцов наблюдалось в ясную погоду, а в пасмурную их поведение было неопределенным. В дальнейшем установили, что скворцы могут обнаруживать кормушку с зерном, руководствуясь положением солнца. Стало очевидным, что скворцы выбирают направление, ориентируясь по солнцу.

Но все же оставалось много неясного. Ведь солнце все время перемещается на небосводе, и, чтобы сохранить постоянное направление полета, птица должна уметь определять угол между направлением своего движения и положением солнца.

У многих животных, в том числе у птиц, есть внутренние биологические часы, и теоретически они могли бы решить такую задачу. Но как они это делают - пока точно неизвестно.

Позднее в круглой клетке повторили опыты с ночными путешественниками. Изучали поведение европейской славки, которая мигрирует по ночам. Опыты проводили под открытым небом и в планетарии. Выяснилось, что в пасмурную погоду славки беспорядочно порхают по клетке, не отдавая предпочтения какому-нибудь определенному направлению. Если же звезды на небе четко видны, то птицы двигаются уверенно, придерживаясь весной северного направления, а осенью южного. Эти опыты удавались даже с птицами, никогда ранее не видевшими звездного неба.

Способность птиц ориентироваться по звездам подтвердили опыты с кряковыми утками, обитающими на западном побережье Англии. Эти утки, если их выпускали из клетки, всегда летели в северо-западном направлении. Для того чтобы выяснить, какими ориентирами они пользуются, у птиц постепенно изменили суточный ритм.

Затем уток с «переставленными часами» выпустили ночью, и все они устремились на северо-запад. Совершенно очевидно, что здесь солнечные часы не играли роли и утки ориентировались по звездному небу. Какие его участки играют решающую роль, покажут дальнейшие исследования.

Итак, однозначного ответа на вопрос, как ориентируются птицы в пространстве, пока нет. Скорее всего птицы используют не один способ ориентации, а несколько.