Что такое электронный микроскоп. Электронная микроскопия. Виды электронных микроскопов

ЭЛЕКТРОННЫЙ МИКРОСКОП -прибор для наблюдения и фотографирования многократно (до 10 6 раз) увеличенного изображения объекта, в к-ром вместо световых лучей используются , ускоренных до больших энергий (30-1000 кэВ и более) в условиях глубокого . Физ. основы корпускулярно-лучевых оптич. приборов были заложены в 1827, 1834-35 (почти за сто лет до появления Э. м.) У. P. Гамильтоном (W. R. Gamil-ton), установившим существование аналогии между прохождением световых лучей в оптически неоднородных средах и траекториями частиц в силовых полях. Целесообразность создания Э. м. стала очевидной после выдвижения в 1924 гипотезы о волнах де Бройля, а техн. предпосылки были созданы X. Бушем (H. Busch), к-рый в 1926 исследовал фокусирующие свойства осесимметричных полей и разработал магн. электронную линзу. В 1928 M. Кнолль (M. Knoll) и E. Руска (E. Ruska) приступили к созданию первого магн. просвечивающего Э. м. (ПЭМ) и спустя три года получили изображение объекта, сформированное пучками электронов. В последующие годы были построены первые растровые Э. м. (РЭМ), работающие на принципе сканирования, т. е. последовательного от точки к точке перемещения тонкого электронного пучка (зонда) по объекту. К сер. 1960-х гг. РЭМ достигли высокого техн. совершенства, и с этого времени началось их широкое применение в науч. исследованиях. ПЭМ обладают самой высокой разрешающей способностью , превосходя по этому параметру световые микроскопы в неск. тысяч раз. П р ед е л р а з р е ш е н и я, характеризующий способность прибора отобразить раздельно две максимально близко расположенные детали объекта, у ПЭМ составляет 0,15- 0,3 HM, т. е. достигает уровня, позволяющего наблюдать атомарную и молекулярную структуру исследуемых объектов. Столь высокие разрешения достигаются благодаря чрезвычайно малой длине волны электронов. Линзы Э. м. обладают аберрациями, эффективных методов коррекции к-рых не найдено в отличие от светового микроскопа (см. Электронная и ионная оптика ).Поэтому в ПЭМ магн. электронные линзы (ЭЛ), у к-рых аберрации на порядок величины меньше, полностью вытеснили электростатические. Оптимальным диафрагмированием (см. Диафрагма в э л е к т р о н н о й и и о н н о й о п т и к е) удаётся снизить сферич. аберрацию объектива, влияющую

на разрешающую способность Э. м. Находящиеся в эксплуатации ПЭМ можно разделить на три группы: Э. м. высокого разрешения, упрощённые ПЭМ и уникальные сверхвысо-коврльтные Э. м.

ПЭМ с высокой разрешающей способностью (0,15- 0,3 нм) - универсальные приборы многоцелевого назначения. Используются для наблюдения изображения объектов в светлом и тёмном поле, изучения их структуры электро-нографич. методом (см. Электронография ),проведения локального количеств. при помощи спектрометра энергетич. потерь электронов и рентгеновских кристаллич. и полупроводникового и получения спектроскопич. изображения объектов с помощью фильтра, отсеивающего электроны с энергиями вне заданного энергетич. окна. Потери энергии электронов, пропущенных фильтром и формирующих изображение, вызываются присутствием в объекте какого-то одного хим. элемента. Поэтому контраст участков, в к-рых присутствует этот элемент, возрастает. Перемещением окна по энергетич. спектру получают распределения разл. элементов, содержащихся в объекте. Фильтр используется также в качестве монохроматора для повышения разрешающей способности Э. м. при исследовании объектов большой толщины, увеличивающих разброс электронов по энергиям и (как следствие) хроматическую аберрацию.

С помощью дополнит. устройств и приставок изучаемый в ПЭМ объект можно наклонять в разных плоскостях на большие углы к оптич. оси, нагревать, охлаждать, деформировать. Ускоряющее электроны напряжение в высокоразрешающих Э. м. составляет 100-400 кВ, оно регулируется ступенчато и отличается высокой стабильностью: за 1 - 3 мин не допускается изменение его величины более чем на (1-2)·10 -6 от исходного значения. От ускоряющего напряжения зависит толшина объекта, которую можно "просветить" электронным пучком. В 100-киловольтных Э. м. изучают объекты толщиной от 1 до неск. десятков нм.

Схематически ПЭМ описываемого типа приведён на рис. 1. В его электронно-оптич. системе (колонне) с помощью вакуумной системы создаётся глубокий вакуум (давление до ~10 -5 Па). Схема электронно-оптич. системы ПЭМ представлена на рис. 2. Пучок электронов, источником к-рых служит термокатод, формируется в электронной пушке и высоковольтном ускорителе и затем дважды фокусируется первым и вторым конденсорами, создающими на объекте электронное "пятно" малых размеров (при регулировке диаметр пятна может меняться от 1 до 20 мкм). После прохождения сквозь объект часть электронов рассеивается и задерживается апертурной диафрагмой. Нерассеянные электроны проходят через отверстие диафрагмы и фокусируются объективом в предметной плоскости промежуточной электронной линзы. Здесь формируется первое увеличенное изображение. Последующие линзы создают второе, третье и т. д. изображения. Последняя - проекционная - линза формирует изображение на катодолюминесцентном экране, который светится под воздействием электронов. Степень и характер рассеяния электронов неодинаковы в различных точках объекта, т. к. толщина, структура и хим. состав объекта меняются от точки к точке. Соответственно изменяется число электронов, прошедших через апертурную диафрагму, а следовательно, и плотность тока на изображении. Возникает амплитудный контраст, к-рый преобразуется в световой контраст на экране. В случае тонких объектов превалирует фазовый контраст , вызываемый изменением фаз , рассеянных в объекте и интерферирующих в плоскости изображения. Под экраном Э. м. расположен магазин с фотопластинками, при фотографировании экран убирается и электроны воздействуют на фотоэмульсионный слой. Изображение фокусируется объективной линзой с помощью плавной регулировки тока, изменяющей её магн. поле. Токами др. электронных линз регулируется увеличение Э. м., к-рое равно произведению увеличений всех линз. При больших увеличениях яркость свечения экрана становится недостаточной и изображение наблюдают с помощью усилителя яркости. Для анализа изображения производятся аналогово-цифровое преобразование содержащейся в нём информации и обработка на компьютере. Усиленное и обработанное по заданной программе изображение выводится на экран компьютера и при необходимости вводится в запоминающее устройство.

Рис. 1. Электронный микроскоп просвечивающего типа (ПЭМ): 1 -электронная пушка с ускорителем; 2-конден сорные линзы; 3 -объективная линза; 4 - проекционные линзы; 5 -световой микроскоп, дополнительно увели чивающий изображение, наблюдаемое на экране; б -ту бус со смотровыми окнами, через которые можно наблю дать изображение; 7 -высоковольтный кабель; 8 - вакуумная система; 9 - пульт управления; 10 -стенд; 11 - высоковольтное питающее устройство; 12 - источник питания линз .

Рис. 2. Электронно-оптическая схема ПЭМ: 1 -катод; 2 - фокусирующий цилиндр; 3 -ускоритель; 4 -пер вый (короткофокусный) конденсор, создающий уменьшенное изображение источника электронов; 5 - второй (длиннофокусный) конденсор, который переносит уменьшенное изображение источника электронов на объект; 6 -объект; 7 -апертурная диа фрагма объектива; 8 - объектив; 9 , 10, 11 -система проекционных линз; 12 -катодолюминесцентный экран .

Упрощённые ПЭМ предназначены для науч. исследований, в к-рых не требуется высокая разрешающая способность. Их используют также для предварит. просмотра объектов, рутинной работы и в учебных целях. Эти приборы просты по конструкции (один конденсор, 2-3 электронные линзы для увеличения изображения объекта), имеют меньшее (60-100 кВ) ускоряющее напряжение и более низкую стабильность высокого напряжения и токов линз. Их разрешающая способность 0,5-0,7 нм.

Сверхвысоковольтные Э. м . (СВЭМ) - приборы с ускоряющим напряжением от 1 до 3,5 MB - представляют собой крупногабаритные сооружения высотой от 5 до 15 м. Для них оборудуют спец. помещения или строят отдельные здания, являющиеся составной частью комплекса СВЭМ. Первые СВЭМ предназначались для исследования объектов большой (1 -10 мкм) толщины, при к-рой сохраняются свойства массивного твёрдого тела. Из-за сильного влияния хроматич. аберраций разрешающая способность таких Э. м. снижается. Однако по сравнению со 100-киловольтными Э. м. разрешение изображения толстых объектов в СВЭМ в 10-20 раз выше. Так как энергия электронов в СВЭМ больше, то длина их волны меньше, чем в ПЭМ высокого разрешения. Поэтому после решения сложных техн. проблем (на это ушло не одно десятилетие) и реализации высокой виброустойчивости, надёжной виброизоляции и достаточной механич. и электрич. стабильности на СВЭМ была достигнута самая высокая (0,13- 0,17 нм) для просвечивающих Э. м. разрешающая способность, позволившая фотографировать изображения атомарных структур. Однако сферич. аберрация и дефокусировка объектива искажают изображения, полученные с предельным разрешением, и мешают получению достоверной информации. Этот информационнный барьер преодолевается с помощью фокальных серий изображений, к-рые получают при разл. дефокусировке объектива. Параллельно для тех же дефокусировок проводят моделирование изучаемой атомарной структуры на компьютере. Сравнение фокальных серий с сериями модельных изображений помогает расшифровать микрофотографии атомарных структур, сделанные на СВЭМ с предельным разрешением. На рис. 3 представлена схема СВЭМ, размещённого в спец. здании. Осн. узлы прибора объединены в единый комплекс с помощью платформы, к-рая подвешена к потолку на четырёх цепях и амортизационных пружинах. Сверху на платформе находятся два бака, наполненные электроизоляционным газом под давлением 3-5 атм. В один из них помещён высоковольтный генератор, в другой- электростатич. ускоритель электронов с электронной пушкой. Оба бака соединены патрубком, через к-рый высокое напряжение от генератора передаётся на ускоритель. Снизу к баку с ускорителем примыкает электронно-оптич. колонна, расположенная в нижней части здания, защищённой перекрытием от рентг. излучения, возникающего в ускорителе. Все перечисленные узлы образуют жёсткую конструкцию, обладающую свойствами физ. маятника с большим (до 7 с) периодом собств. , к-рые гасятся жидкостными демпферами. Маятниковая система подвески обеспечивает эффективную изоляцию СВЭМ от внеш. вибраций. Управление прибором производится с пульта, находящегося около колонны. Устройство линз, колонны и др. узлов прибора подобно соответствующим устройствам ПЭМ и отличается от них большими габаритами и весом.


Рис. 3. Сверхвысоковольтный электронный микроскоп (СВЭМ): 1-виброизолирующая платформа; 2-цепи , на которых висит платформа; 3 - амортизирующие пружины; 4-баки, в которых находятся генератор вы сокого напряжения и ускоритель электронов с электрон ной пушкой; 5-электронно-оптическая колонна; 6 - перекрытие, разделяющее здание СВЭМ на верхний и нижний залы и защищающее персонал, работающий нижнем зале, от рентгеновского излучения; 7 - пульт управления микроскопом .

Растровые Э. м . (РЭМ) с термоэмиссионной пушкой - самый распространённый тип приборов в электронной микроскопии . В них применяются вольфрамовые и гексабо-рид-лантановые термокатоды. Разрешающая способность РЭМ зависит от электронной яркости пушки и в приборах рассматриваемого класса составляет 5-10 нм. Ускоряющее напряжение регулируется в пределах от 1 до 30- 50 кВ. Устройство РЭМ показано на рис. 4. При помощи двух или трёх электронных линз на поверхность образца фокусируется узкий электронный зонд. Магн. отклоняющие катушки развёртывают зонд по заданной площади на объекте. При взаимодействии электронов зонда с объектом возникает несколько видов излучений (рис. 5): вторичные и отражённые электроны; оже-электроны; рентгеновское тормозное излучение и характеристическое излучение (см. Характеристический спектр); световое излучение и т. д. Любое из излучений, токи электронов, прошедших сквозь объект (если он тонкий) и поглощённых в объекте, а также напряжение, наведённое на объекте, могут регистрироваться соответствующими детекторами, преобразующими эти излучения, токи и напряжения в электрич. сигналы, к-рые после усиления подаются на электронно-лучевую трубку (ЭЛТ) и модулируют её пучок. Развёртка пучка ЭЛТ производится синхронно с развёрткой электронного зонда в РЭМ, и на экране ЭЛТ наблюдается увеличенное изображение объекта. Увеличение равно отношению размера кадра на экране ЭЛТ к соответствующему размеру на сканируемой поверхности объекта. Фотографируют изображение непосредственно с экрана ЭЛТ. Осн. достоинство РЭМ - высокая информативность прибора, обусловленная возможностью наблюдать изображения, используя сигналы разл. детекторов. С помощью РЭМ можно исследовать микрорельеф, распределение хим. состава по объекту, p-n -переходы, производить рентг. спектральный анализ и др. РЭМ широко применяются и в технол. процессах (контроль в электронно-литог-рафич. технологиях, проверка и выявление дефектов в микросхемах, метрология микроизделий и др.).


Рис. 4. Схема растрового электронного микроскопа (РЭМ): 1 -изолятор электронной пушки; 2 -V -образ ный термокатод; 3 -фокусирующий электрод; 4 - анод; 5 - конденсорные линзы; 6 -диафрагма; 7 - двухъярусная отклоняющая система; 8 -объектив; 9 -апертурная диафрагма объектива; 10 -объект; 11 -детектор вторичных электронов; 12 -кристал лический спектрометр; 13 -пропорциональный счётчик; 14 - предварительный усилитель; 15 - блок усиления; 16, 17 -аппаратура для регистрации рентгеновского излучения; 18 - блок усиления; 19 - блок регулировки увеличения; 20, 21 - блоки гори зонтальной и вертикальной развёрток; 22, 23 -элек тронно-лучевые трубки .


Рис. 5. Схема регистрации информации об объекте , получаемой в РЭМ; 1-первичный пучок электронов; 2-детектор вторичных электронов; 3-детектор рент геновского излучения; 4-детектор отражённых элект ронов; 5-детектор оже-электронов; 6-детектор све тового излучения; 7 - детектор прошедших электро нов; 8 - схема для регистрации тока прошедших через объект электронов; 9-схема для регистрации тока поглощённых в объекте электронов; 10-схема для ре гистрации наведённого на объекте электрического потенциала .

Высокая разрешающая способность РЭМ реализуется при формировании изображения с использованием вторичных электронов. Она находится в обратной зависимости от диаметра зоны, из к-рой эти электроны эмитируются. Размер зоны зависит от диаметра зонда, свойств объекта, скорости электронов первичного пучка и т. д. При большой глубине проникновения первичных электронов вторичные процессы, развивающиеся во всех направлениях, увеличивают диаметр зоны и разрешающая способность падает. Детектор вторичных электронов состоит из фотоэлектронного умножителя (ФЭУ) и электронно-фотонного преобразователя, осн. элементом к-рого является сцинтил-лятор. Число вспышек сцинтиллятора пропорционально числу вторичных электронов, выбитых в данной точке объекта. После усиления в ФЭУ и в видеоусилителе сигнал модулирует пучок ЭЛТ. Величина сигнала зависит от топографии образца, наличия локальных электрич. и магн. микрополей, величины коэф. вторичной электронной эмиссии, к-рый, в свою очередь, зависит от хим. состава образца в данной точке.

Отражённые электроны улавливаются полупроводниковым детектором с p - n -переходом. Контраст изображения обусловлен зависимостью коэф. отражения от угла падения первичного пучка в данной точке объекта и от ат. номера вещества. Разрешение изображения, получаемого в "отражённых электронах", ниже, чем получаемого с помощью вторичных электронов (иногда на порядок величины). Из-за прямолинейности полёта электронов информация об отд. участках объекта, от к-рых прямого пути к детектору нет, теряется (возникают тени). Для устранения потерь информации, а также для формирования изображения рельефа образца, на к-рое не влияет его элементный состав и, наоборот, для формирования картины распределения хим. элементов в объекте, на к-рую не влияет его рельеф, в РЭМ применяется детекторная система, состоящая из неск. размещённых вокруг объекта детекторов, сигналы к-рых вычитаются один из другого или суммируются, а результирующий сигнал после усиления подаётся на модулятор ЭЛТ.

Рентг. характеристич. излучение регистрируется кри-сталлич. (волноводисперсным) или полупроводниковым (энергодисперсным) спектрометрами, к-рые взаимно дополняют друг друга. В первом случае рентг. излучение после отражения кристаллом спектрометра попадает в газовый пропорциональный счётчик , а во втором - рентг. кванты возбуждают сигналы в полупроводниковом охлаждаемом (для снижения шума) детекторе из кремния, легированного литием, или из германия. После усиления сигналы спектрометров могут быть поданы на модулятор ЭЛТ и на её экране возникнет картина распределения того или иного хим. элемента по поверхности объекта.

На РЭМ, оснащённом рентг. спектрометрами, производят локальный количеств. анализ: регистрируют число импульсов, возбуждаемых рентг. квантами от участка, на к-ром остановлен электронный зонд. Кристаллич. спектрометр с помощью набора кристаллов-анализаторов с разл. межплоскостными расстояниями (см. Брэгга-Вульфа условие )дискриминирует с высоким спектр. разрешением характеристич. спектр по длинам волн, перекрывая диапазон элементов от Be до U. Полупроводниковый спектрометр дискриминирует рентг. кванты по их энергиям и регистрирует одновременно все элементы от В (или С) до U. Его спектральное разрешение ниже, чем у кристаллич. спектрометра, но выше чувствительность. Имеются и др. преимущества: быстрая выдача информации, простая конструкция, высокие эксплуатационные характеристики.

Растровые оже-Э. м . (РОЭМ)-приборы, в к-рых при сканировании электронного зонда детектируются оже-электроны из глубины объекта не более 0,1-2 нм. При такой глубине зона выхода оже-электронов не увеличивается (в отличие от электронов вторичной эмиссии) и разрешение прибора зависит только от диаметра зонда. Прибор работает при сверхвысоком вакууме (10 -7 -10 -8 Па). Его ускоряющее напряжение ок. 10 кВ. На рис. 6 представлено устройство РОЭМ. Электронная пушка состоит из гексаборид-лантанового или вольфрамового термокатода, работающего в режиме Шоттки, и трёхэлектродной электростатич. линзы. Электронный зонд фокусируется этой линзой и магн. объективом, в фокальной плоскости к-рого находится объект. Сбор оже-электронов производится с помощью цилиндрич. зеркального анализатора энергий, внутренний электрод к-рого охватывает корпус объектива, а внешний примыкает к объекту. С помощью анализатора, дискриминирующего оже-электроны по энергиям, исследуется распределение хим. элементов в поверхностном слое объекта с субмикронным разрешением. Для исследования глубинных слоев прибор оснащается ионной пушкой, при помощи к-рой удаляются верхние слои объекта методом ионно-лучевого травления.

Рис. б. Схема растрового оже-электронного микроскопа (РОЭМ): 1 - ионный насос; 2- катод; 3 - трёхэлектродная электростатическая линза; 4-многоканальный детектор; 5-апертурная диафрагма объектива; 6-двухъярусная отклоняющая система для развёртки электронного зонда; 7-объектив; 8- наружный электрод цилиндрического зеркального анализатора; 9-объект .

РЭМ с автоэмиссионной пушкой обладают высокой разрешающей способностью (до 2-3 нм). В автоэмиссионной пушке используется катод в форме острия, у вершины к-рого возникает сильное элекгрич. поле, вырывающее электроны из катода (автоэлектронная эмиссия) . Электронная яркость пушки с автоэмиссионным катодом в 10 3 -10 4 раз выше яркости пушки с термокатодом. Соответственно увеличивается ток электронного зонда. Поэтому в РЭМ с автоэмиссионной пушкой осуществляют наряду с медленной быструю развёртку, а диаметр зонда уменьшают для повышения разрешающей способности. Однако автоэмиссионный катод работает устойчиво лишь при сверхвысоком вакууме (10 -7 -10 -9 Па), что усложняет конструкцию и эксплуатацию таких РЭМ.

Просвечивающие растровые Э. м . (ПРЭМ) обладают столь же высокой разрешающей способностью, как и ПЭМ. В этих приборах применяются автоэмиссионные пушки, работающие в условиях сверхвысокого вакуума (до 10 -8 Па), обеспечивающие достаточный ток в зонде малого диаметра (0,2-0,3 нм). Диаметр зонда уменьшают две магн. линзы (рис. 7). Ниже объекта расположены детекторы - центральный и кольцевой. На первый попадают нерассеянные электроны, и после преобразования и усиления соответствующих сигналов на экране ЭЛТ появляется светлопольное изображение. На кольцевом детекторе собираются рассеянные электроны, создающие темнополь-ное изображение. В ПРЭМ можно исследовать более толстые объекты, чем в ПЭМ, т. к. возрастание числа неупруго рассеянных электронов с толщиной не влияет на разрешение (после объекта электронная оптика для формирования изображения отсутствует). С помощью анализатора энергии электроны, прошедшие сквозь объект, разделяются на упруго и неупруго рассеянные пучки. Каждый пучок попадает на свой детектор, и на ЭЛТ наблюдаются соответствующие изображения, содержащие дополнит. информацию об элементном составе объекта. Высокое разрешение в ПРЭМ достигается при медленных развёртках, т. к. в зонде диаметром всего 0,2-0,3 нм ток получается малым. ПРЭМ оснащаются всеми используемыми в электронной микроскопии устройствами для аналитич. исследований объектов, и в частности спектрометрами энерге-тич. потерь электронов, рентг. спектрометрами, сложными системами детектирования прошедших, обратно рассеянных и вторичных электронов, выделяющих группы электронов, рассеянных на разл. углы, имеющих разл. энергию и т. п. Приборы комплектуются ЭВМ для комплексной обработки поступающей информации.

Рис. 7. Принципиальная схема просвечивающего растро вого электронного микроскопа (ПРЭМ): 1-автоэмис сионный катод; 2-промежуточный анод; 3- анод; 4 - диафрагма "осветителя"; 5-магнитная линза; 6-двухъ ярусная отклоняющая система для развёртки электрон ного зонда; 7-магнитный объектив; 8 - апертурная диафрагма объектива; 9 -объект; 10 - отклоняющая система; 11 - кольцевой детектор рассеянных электронов; 12 -детектор нерассеянных электронов (удаляется при работе магнитного спектрометра); 13 - магнитный спектрометр; 14-отклоняющая система для отбора электронов с различными потерями энергии; 15 - щель спектрометра; 16-детектор спектрометра; ВЭ-вторич ные электроны; hv -рентгеновское излучение .

Эмиссионные Э. м . создают изображение объекта электронами, к-рые эмитирует сам объект при нагревании, бомбардировке первичным пучком электронов, под действием эл--магн. излучения и при наложении сильного электрич. поля, вырывающего электроны из объекта. Эти приборы обычно имеют узкое целевое назначение (см. Электронный проектор ).

Зеркальные Э. м . служат гл. обр. для визуализации элек-тростатич. "потенциальных рельефов" и магн. микрополей на поверхности объекта. Осн. электронно-оптич. элементом прибора является электронное зеркало ,причём одним из электродов служит сам объект, к-рый находится под небольшим отрицат. потенциалом относительно катода пушки. Электронный пучок направляется в электронное зеркало и отражается полем в непосредственной близости от поверхности объекта. Зеркало формирует на экране изображение "в отражённых пучках": микрополя возле поверхности объекта перераспределяют электроны отражённых пучков, создавая контраст в изображении, визуа-лизирующий эти микрополя.

Перспективы развития Э. м . Совершенствование Э. м. с целью увеличения объёма получаемой информации, проводившееся многие годы, продолжится и в дальнейшем, а улучшение параметров приборов, и прежде всего повышение разрешающей способности, останется главной задачей. Работы по созданию электронно-оптич. систем с малыми аберрациями пока не привели к реальному повышению разрешения Э. м. Это относится к не-осесимметричным системам коррекции аберраций, криогенной оптике, к линзам с корректирующим пространств. в приосевой области и др. Поиски и исследования в указанных направлениях ведутся. Продолжаются поисковые работы по созданию электронных гологра-фич. систем, в т. ч. и с коррекцией частотно-контрастных характеристик линз. Миниатюризация электростатич. линз и систем с использованием достижений микро- и на-нотехнологий также будет способствовать решению проблемы создания электронной оптики с малыми аберрациями.

Лит.: Практическая растровая электронная микроскопия, под ред. Д. Гоулдстейна, X. Яковица, пер. с англ., M., 1978; Спенс Д., Экспериментальная электронная микроскопия высокого разрешения, пер. с англ., M., 1986; Стоянов П. А., Электронный микроскоп СВЭМ-1, "Известия АН СССР, сер. физ.", 1988, т. 52, № 7, с. 1429; Хокс П., Каспер Э., Основы электронной оптики, пер. с англ.,т. 1-2, M., 1993; Oechsner H., Scanning auger microscopy, Le Vide, les Couches Minces, 1994, t. 50, № 271, p. 141; McMul-lan D., Scanning electron microscopy 1928-1965, "Scanning", 1995, t. 17, № 3, c. 175. П. А. Стоянов .

Электронная микроскопия - это метод исследования структур, находящихся вне пределов видимости светового микроскопа и имеющих размеры менее одного микрона (от 1 мк до 1-5 Å).

Действие электронного микроскопа (рис.) основано на использовании направленного потока , который выполняет роль светового луча в световом микроскопе, а роль линз играют магниты (магнитные линзы).

Вследствие того, что различные участки исследуемого объекта по-разному задерживают электроны, на экране электронного микроскопа получается черно-белое изображение изучаемого объекта, увеличенное в десятки и сотни тысяч раз. В биологии и медицине в основном используются электронные микроскопы просвечивающего типа.

Электронная микроскопия возникла в 30-х годах, когда были получены первые изображения некоторых вирусов (вируса табачной мозаики и бактериофагов). В настоящее время электронная микроскопия нашла наиболее широкое применение в , и вирусологии, обусловив создание новых отраслей науки. При электронной микроскопии биологических объектов применяют специальные методы приготовления препаратов. Это необходимо для выявления отдельных компонентов изучаемых объектов (клетки, бактерии, вируса и т. д.), а также для сохранения их структуры в условиях высокого вакуума под пучком электронов. При помощи электронной микроскопии изучается внешняя форма объекта, молекулярная организация его поверхности, с помощью метода ультратонких срезов исследуется внутреннее строение объекта.

Электронная микроскопия в сочетании с биохимическими, цитохимическими методами исследования, иммунофлюоресценцией, а также рентгеноструктурным анализом позволяют судить о составе и функции структурных элементов клеток и вирусов.

Электронный микроскоп 70-х годов прошлого века

Электронная микроскопия - изучение микроскопических объектов при помощи электронного микроскопа.

Электронный микроскоп представляет электронно-оптический инструмент, обладающий разрешающей способностью в несколько ангстрем и позволяющий визуально изучать тонкое строение микроскопических структур и даже некоторых молекул.

В качестве источника электронов для создания электронного пучка, заменяющего световой пучок, служит трехэлектродная пушка, состоящая из катода, управляющего электрода и анода (рис. 1).


Рис. 1. Трехэлектродная пушка: 1 - катод; 2 - управляющий электрод; 3 - пучок электронов; 4 - анод.

Электромагнитные линзы, применяемые в электронном микроскопе вместо оптических, представляют многослойные соленоиды, заключенные в панцири из магнитно-мягкого материала, имеющие на внутренней стороне немагнитный зазор (рис. 2).


Рис. 2. Электромагнитная линза: 1 - полюсной наконечник; 2 - латунное кольцо; 3 - обмотка; 4 - панцирь.

Электрические и магнитные поля, создаваемые в электронном микроскопе, являются аксиально симметричными. Благодаря действию этих полей заряженные частицы (электроны), выходящие из одной точки объекта в пределах небольшого угла, вновь собираются в плоскости изображения. Вся электронно-оптическая система заключена в колонне электронного микроскопа (рис. 3).

Рис. 3. Электронно-оптическая система: 1 - управляющий электрод; 2 - диафрагма первого конденсатора; 3 - диафрагма второго конденсатора; 4 - стигматор второго конденсатора; 5 - объект; 6 - линза объектива; 7 - стигматор линзы объектива; 8 - стигматор промежуточной линзы; 9 - диафрагма проекционной линзы; 10 - катод; 11 - анод; 12 - первый конденсатор; 13 - второй конденсатор; 14 - корректор фокусировки; 15 - столик объектодержателя; 16 - диафрагма линзы объектива; 17 - селекторная диафрагма; 18 - промежуточная линза; 19 - проекционная линза; 20 - экран.

Созданный электронной пушкой пучок электронов направляется в поле действия конденсорных линз, которые позволяют в широких пределах изменять плотность, диаметр и апертуру пучка, падающего на исследуемый объект. В камере объекта установлен столик, конструкция которого обеспечивает перемещение объекта во взаимно перпендикулярных направлениях. При этом можно последовательно осмотреть площадь, равную 4 мм 2 , и выбрать наиболее интересные участки.

За камерой объекта расположена линза объектива, которая позволяет достигать резкого изображения объекта. Она же дает первое увеличенное изображение объекта, и с помощью последующих, промежуточной и проекционной, линз общее увеличение можно довести до максимального. Изображение объекта возникает на экране, люминесцирующем под действием электронов. За экраном расположены фотопластины. Стабильность действия электронной пушки, а также четкость изображения наряду с другими факторами (постоянство высокого напряжения и др.) во многом зависят от глубины разрежения в колонне электронного микроскопа, поэтому качество работы прибора в значительной степени определяется вакуумной системой (насосы, каналы откачки, краны, клапаны, уплотнения) (рис. 4). Необходимое разрежение внутри колонны достигается благодаря высокой эффективности вакуумных насосов.

Предварительное разрежение во всей вакуумной системе создает механический форвакуумный насос, затем вступает в действие масляный диффузионный насос; оба насоса включены последовательно и обеспечивают в колонне микроскопа высокое разрежение. Введение в систему электронного микроскопа масляного бустерного насоса позволило на длительное время отключать форвакуумный насос.


Рис. 4. Вакуумная схема электронного микроскопа: 1 - ловушка, охлаждаемая жидким азотом (хладопровод); 2 - высоковакуумный кран; 3 - диффузионный насос; 4 - обходной клапан; 5 - малый буферный баллон; 6 - бустерный насос; 7 - механический форвакуумный насос предварительного разрежения; 8 - четырехходовой клапанный кран; 9 - большой буферный баллон; 10 - колонна электронного микроскопа; 11 - клапан напуска воздуха в колонну микроскопа.

Электрическая схема микроскопа состоит из источников высокого напряжения, накала катода, питания электромагнитных линз, а также системы, обеспечивающей переменным сетевым напряжением электродвигатель форвакуумного насоса, печь диффузионного насоса и освещение пульта управления. К питающему устройству предъявляются очень высокие требования: например, для высокоразрешающего электронного микроскопа степень нестабильности высокого напряжения не должна превышать 5·10 -6 за 30 сек.

Интенсивный электронный пучок образуется в результате термоэмиссии. Источником накала катода, который представляет собой V-образную вольфрамовую нить, служит высокочастотный генератор. Генерируемое напряжение с частотой колебаний 100-200 кГц обеспечивает получение монохроматического электронного пучка. Питание линз электронного микроскопа обеспечивается постоянным высокостабилизированным током.


Рис. 5. Электронный микроскоп УЭМВ-100Б для исследования живых микроорганизмов.

Выпускаются приборы (рис. 5) с гарантированной разрешающей способностью 4,5 Å; на отдельных уникальных снимках получено разрешение 1,27 Å, приближающееся к размеру атома. Полезное увеличение при этом равно 200 000.

Электронный микроскоп - прецезионный прибор, который требует особых методов приготовления препаратов. Биологические объекты малоконтрастны, поэтому приходится искусственно усиливать контраст препарата. Имеется несколько способов повышения контрастности препаратов. При оттенении препарата под углом платиной, вольфрамом, углеродом и т. д. становится возможным определять на электронномикроскопических снимках размеры по всем трем осям пространственной системы координат. При позитивном контрастировании препарат соединяется с водорастворимыми солями тяжелых металлов (уранилацетат, моноокись свинца, перманганат калия и др.). При негативном контрастировании препарат окружают тонким слоем аморфного вещества высокой плотности, непроницаемого для электронов (молибденовокислый аммоний, уранилацетат, фосфорно-вольфрамовая кислота и др.).

Электронная микроскопия вирусов (вирусоскопия) обусловила значительный прогресс в изучении ультратонкой, субмолекулярной структуры вирусов (см.). Наряду с физическими, биохимическими и генетическими методами исследования применение электронной микроскопии способствовало также возникновению и развитию молекулярной биологии. Предметом изучения этого нового раздела биологии является субмикроскопическая организация и функционирование клеток человека, животных, растений, бактерий и микоплазм, а также организация риккетсий и вирусов (рис. 6). Вирусы, крупные молекулы белка и нуклеиновых кислот (РНК, ДНК), отдельные фрагменты клеток (например, молекулярное строение оболочки бактериальных клеток) можно исследовать при помощи электронного микроскопа после специальной обработки: оттенения металлом, позитивного или негативного контрастирования уранилацетатом или фосфорно-вольфрамовой кислотой, а также другими соединениями (рис. 7).

Рис. 6. Клетка культуры ткани сердца обезьяны циномольгус, инфицированная вирусом натуральной оспы (X 12 000): 1 - ядро; 2 - митохондрии; 3 - цитоплазма; 4 - вирус.
Рис. 7. Вирус гриппа (негативное контрастирование (Х450 000): 1 - оболочка; 2 - рибонуклеопротеид.

Методом негативного контрастирования на поверхности многих вирусов были обнаружены закономерно расположенные группы белковых молекул - капсомеры (рис. 8).

Рис. 8. Фрагмент поверхности капсида вируса герпеса. Видны отдельные капсомеры (X500 000): 1 - вид сбоку; 2 - вид сверху.
Рис. 9. Ультратонкий срез бактерии Salmonella typhimurium (Х80 000): 1 - ядро; 2 - оболочка; 3 - цитоплазма.

Внутреннее строение бактерий и вирусов, а также других более крупных биологических объектов можно изучать только после рассечения их при помощи ультратома и приготовления тончайших срезов толщиной 100-300 Å. (рис. 9). Благодаря улучшению методов фиксации, заливки и полимеризации биологических объектов, применению алмазных и стеклянных ножей при ультратомировании, а также использованию высококонтрастирующих соединений для окрашивания серийных срезов удалось получить ультратонкие срезы не только крупных, но и самых мелких вирусов человека, животных, растений и бактерий.

Что такое USB-микроскоп?

USB-микроскоп – это вид цифрового микроскопа. Вместо привычного окуляра здесь установлена цифровая камера, которая захватывает изображение с объектива и переносит его на экран монитора или ноутбука. К компьютеру такой микроскоп подключается очень просто – через обычный USB-кабель. В комплекте с микроскопом всегда идет специальное программное обеспечение, которое позволяет обрабатывать получаемые изображения. Вы сможете делать фотографии, создавать видеоролики, менять контрастность, яркость и размеры картинки. Возможности программного обеспечения зависят от производителя.

USB-микроскоп – это прежде всего компактный увеличительный прибор. Его удобно брать с собой в поездки, на встречи или за город. Обычно USB-микроскоп не может похвастаться большим увеличением, но для изучения монет, мелкого шрифта, предметов искусства, образцов тканей или денежных купюр его возможностей вполне хватает. С помощью такого микроскопа можно исследовать растения, насекомых и любые окружающие вас мелкие предметы.

Где купить электронный микроскоп?

Если вы окончательно определились с выбором модели, электронный микроскоп купить можно на этой страничке. В нашем интернет-магазине вы найдете электронный микроскоп по лучшей цене!

Если вы хотите воочию увидеть электронный микроскоп, а потом принять решение – посетите, ближайший к вам, магазин «Четыре глаза».
Да-да, и возьмите с собой детей! Без покупок и подарков точно не останетесь!

Технологическая археология)
Одни электронные микроскопы восстанавливают, другие прошивки космических аппаратов, третьи - занимаются реверс-инжинирингом схемотехники микросхем под микроскопом. Подозреваю, что занятие жутко увлекательное.
А, к слову, вспомнил о чудесном посте об индустриальной археологии .

Спойлер

Корпоративная память бывает двух видов: люди и документация. Люди помнят, как вещи работают, и знают, почему. Иногда они записывают эту информацию куда-нибудь и хранят свои записи где-нибудь. Это называется «документация». Корпоративная амнезия действует точно так же: люди уходят, и документация исчезает, гниёт или просто забывается.

Я провёл несколько десятилетий, работая в большой нефтехимической компании. В начале 1980-х мы спроектировали и построили завод, который переделывает одни углеводороды в другие углеводороды. За следующие 30 лет корпоративная память об этом заводе ослабла. Да, завод всё ещё работает и приносит фирме деньги; техобслуживание производится, и высокомудрые специалисты знают, что им надо подёргать и куда пнуть, чтобы завод продолжил работать.

Но компания абсолютно забыла, как этот завод работает.

Это произошло по вине нескольких факторов:

Спад в нефтехимической промышленности в 1980-х и 1990-х заставил нас прекратить принимать на работу новых людей. В конце 1990-х, в нашей группе работали ребята в возрасте младше 35 или старше 55 - с очень редкими исключениями.
Мы потихоньку перешли на проектирование с помощью компьютерных систем.
Из-за корпоративных реорганизаций нам пришлось физически переезжать всем офисом с места на место.
Корпоративное слияние несколькими годами позже полностью растворило нашу фирму в более крупной, вызвав глобальную перестройку отделов и перетасовку кадров.
Индустриальная археология

В начале 2000-х я и несколько моих коллег вышли на пенсию.

В конце 2000-х компания вспомнила о заводе и подумала, что было бы неплохо сделать с ним что-нибудь. Скажем, увеличить производство. К примеру, можно найти узкое место в производственном процессе и улучшить его, - технология-то эти 30 лет не стояла на месте, - и, может быть, пристроить ещё один цех.

И тут компания со всего маху впечатывается в кирпичную стену. Как этот завод был построен? Почему он был построен именно так, а не иначе? Как именно он работает? Для чего нужен чан А, зачем цеха Б и В соединены трубопроводом, почему трубопровод имеет диаметр именно Г, а не Д?

Корпоративная амнезия в действии. Гигантские машины, построенные инопланетянами с помощью их инопланетной технологии, чавкают, как заведённые, выдавая на-гора груды полимеров. Компания примерно представляет себе, как обслуживать эти машины, но понятия не имеет, что за удивительное волшебство творится внутри, и ни у кого нет ни малейшего представления о том, как они создавались. В общем, народ даже не уверен, что именно надо искать, и не знает, с какой стороны следует распутывать этот клубок.

Отыскиваются ребята, которые во время строительства этого завода уже работали в фирме. Теперь они занимают высокие должности и сидят в отдельных, кондиционированных кабинетах. Им дают задание найти документацию по означенному заводу. Это уже не корпоративная память, это больше похоже на индустриальную археологию. Никто не знает, какая документация по этому заводу существует, существует ли она вообще, и если да, то в каком виде она хранится, в каких форматах, что она в себя включает и где она лежит физически. Завод проектировался проектной группой, которой больше нет, в компании, которая с тех пор была поглощена, в офисе, который был закрыт, используя методы до-компьютерной эпохи, которые больше не применяются.

Ребята вспоминают детство с обязательным копошением в грязи, закатывают рукава дорогих пиджаков и принимаются за работу.

Московский институт электронной техники

Лаборатория электронной микроскопии С.В. Седов

[email protected]

Принцип работы современного растрового электронного микроскопа и его использование для исследования объектов микроэлектроники

Цель работы: знакомство с методиками исследования материалов и микроэлектронных структур при помощи растрового электронного микроскопа.

Продолжительность работы: 4 ч.

Приборы и принадлежности: растровый электронный микроскоп Philips-

SEM-515, образцы микроэлектронных структур.

Устройство и принцип работы растрового электронного микроскопа

1. Введение

Растровая электронная микроскопия - это исследование объекта путем облучения тонко сфокусированным электронным пучком, который развертывается в растр по поверхности образца. В результате взаимодействия сфокусированного электронного пучка с поверхностью образца возникают вторичные электроны, отраженные электроны, характеристическое рентгеновское излучение, ожэ-электроны и фотоны различных энергий. Они рождаются в определенных объемах - областях генерации внутри образца и могут быть использованы для измерения многих его характеристик, таких как топография поверхности, химический состав, электрофизические свойства и т д.

Основной причиной широкого использования растровых электронных микроскоов является высокое разрешение при исследовании массивных объектов, достигающее 1,0 нм (10 Å). Другой важной чертой изображений, получаемых в растровом электронном микроскопе является их объемность, обусловленная большой глубиной резкости прибора. Удобство применения растрового микроскопа в микро-и нанотехнологии объясняется относительной простотой подготовки образца и оперативностью исследования, что позволяет использовать его для межоперационного контроля технологических параметров без значительных потерь времени. Изображение в растровом микроскопе формируется в виде телевизионного сигнала, что существенно упрощает его ввод в компьютер и дальнейшую программную обработку результатов исследований.

Развитие микротехнологий и появление нанотехнологий, где размеры элементов существенно меньше длины волны видимого света, делает растровую электронную микроскопию практически единственной неразрушающей методикой визуального контроля при производстве изделий твердотельной электроники и микромеханики.

2. Взаимодействие электронного луча с образцом

При взаимодействии пучка электронов с твердой мишенью возникает большое число различного рода сигналов. Источником этих сигналов являются области излучения, размеры которых зависят от энергии пучка и атомного номера бомбардируемой мишени. Размерами этой области, при использовании определенного сорта сигнала, определяется разрешение микроскопа. На рис. 1 показаны области возбуждения в образце для разных сигналов.

Полное распределение по энергии электронов, излучаемых образцом

приведено на рис.2. Оно получено при энергии падающего пучка Е 0= 180эВ, по оси ординат отложено число эмиттированых мишенью электронов J s (E), а по оси абсцисс - энергия Е этих электронов. Заметим, что вид зависимости,

приведенной на рис.2, сохраняется и для пучков с энергией 5 – 50 кэВ, используемых в растровых электронных микроскопах.

Г
руппуI составляют упруго отраженные электроны с энергией, близкой к энергии первичного пучка. Они возникают при упругом рассеянии под большими углами. С увеличением атомного номера Z растет упругое рассеяние и увеличивается доля отраженных электронов . Распределение отраженных электронов по энергиям для некоторых элементов приведено на рис.3.

Угол рассеяния 135 0
, W=E/E 0 - нормированная энергия, d/dW - число отраженных электронов на падающий электрон и на единицу энергетического интервала. Из рисунка видно, что при увеличении атомного номера не только растет число отраженных электронов, но и их энергия становится ближе к энергии первичного пучка. Это приводит к возникновению контраста по атомному номеру и позволяет исследовать фазовый состав объекта.

Группа II включает в себя электроны, подвергшиеся многократному неупругому рассеянию и излученные к поверхности после прохождения более или менее толстого слоя материала мишени, потеряв при этом определенную часть своей первоначальной энергии.

Э
лектроны группыIII являются вторичными электронами с малой энергией (менее 50 эВ), которые образуются при возбуждении первичным пучком слабосвязаных электронов внешних оболочек атомов мишени. Основное влияние на количество вторичных электронов оказывает топография поверхности образца и локальные электрические и магнитные поля. Количество выходящих вторичных электронов зависит от угла падения первичного пучка (рис.4). Пусть R 0 – максимальная глубина выхода вторичных электронов. Если образец наклонен, то длина пути в пределах расстояния R 0 от поверхности возрастает: R = R 0 sec 

Следовательно возрастает и количество соударений, при которых рождаются вторичные электроны. Поэтому незначительное изменение угла падения приводит к заметному изменению яркости выходного сигнала. Благодаря тому, что генерация вторичных электронов происходит в основном в приповерхностной области образца (рис.1), разрешение изображения во вторичных электронах близко к размерам первичного электронного пучка.

Характеристическое рентгеновское излучение возникает в результате взаимодействия падающих электронов с электронами внутренних K, L, или М оболочек атомов образца. Спектр характеристического излучения несет информацию о химическом составе объекта. На этом основаны многочисленные методы микроанализа состава. Большинство современных растровых электронных микроскопов оснащено энергодисперсионными спектрометрами для качественного и количественного микроанализа, а так же для создания карт поверхности образца в характеристическом рентгеновском излучении определенных элементов.

3 Устройство растрового электронного микроскопа .