Современные способы защиты от коррозии. Коррозия: виды коррозии, способы защиты. Характеристики и сущность коррозионных процессов

Под воздействием внешних факторов (жидкости, газы, агрессивные химические соединения) разрушаются любые материалы. Не являются исключением и металлы. Коррозийные процессы нейтрализовать полностью невозможно, но вот снизить их интенсивность, повысив тем самым эксплуатационный срок металлоконструкций или иных, в состав которых входит «железо», вполне возможно.

Способы антикоррозийной защиты

Все способы защиты от коррозии можно условно классифицировать как методики, которые применимы или до начала эксплуатации образца (группа 1), или уже после его ввода в строй (группа 2).

Первая

  • Повышение сопротивляемости «химическому» воздействию.
  • Исключение прямого контакта с агрессивными веществами (изоляция поверхностная).

Вторая

  • Снижение степени агрессивности окружающей среды (в зависимости от условий эксплуатации).
  • Использование ЭМ полей (к примеру, «наложение» внешних эл/токов, регулирование их плотности и ряд других методик).

Применение того или иного способа защиты определяется индивидуально для каждой конструкции и зависит от нескольких факторов:

  • вид металла;
  • условия его эксплуатации;
  • сложность проведения антикоррозийных мероприятий;
  • производственные возможности;
  • экономическая целесообразность.

В свою очередь, все методики подразделяются на активные (подразумевающие постоянное «воздействие» на материал), пассивные (которые можно охарактеризовать как многоразового применения) и технологические (использующиеся на этапе изготовления образцов).

Активные

Катодная защита

Целесообразно использовать, если среда, с которой контактирует металл – электропроводящая. На материал подается (систематически или постоянно) большой «минусовой» потенциал, который делает в принципе невозможным его окисление.

Протекторная защита

Заключается в катодной поляризации. Образец связывается контактом с материалом, который более подвержен окислению в данной токопроводящей среде (протектором). По сути, он является своего рода «громоотводом», принимая на себя весь «негатив», который создают агрессивные вещества. Но такой протектор нуждается в периодической замене на новый.

Поляризация анодная

Применяется крайне редко и заключается в поддержании «инертности» материала по отношению к внешним воздействиям.

Пассивные (поверхностная обработка металла)

Создание защитной пленки

Одна из самых распространенных и малозатратных методик борьбы с коррозией. Для создания поверхностного слоя используются вещества, которые должны соответствовать следующим основным требованиям – быть инертными по отношению к агрессивным хим/соединениям, не проводить эл/ток и обладать повышенной адгезией (хорошо скрепляться с основой).

Все используемые вещества в момент обработки металлов находятся в жидком или «аэрозольном» состоянии, от чего зависит и способ их нанесения – окраска или напыление. Для этого применяются лакокрасочные составы, различные мастики и полимеры.

Прокладка металлоконструкций в защитных «желобах»

Это характерно для разного вида трубопроводов и коммуникаций инженерных систем. В данном случае роль изолятора играет воздушная «прослойка» между внутренними стенками канала и поверхностью металла.

Фосфатирование

Металлы подвергаются обработке специальными средствами (окислителями). Они вступают с основой в реакцию, в результате чего на ее поверхности происходит отложение малорастворимых хим/соединений. Довольно эффективный способ защиты от влаги.

Покрытие более устойчивыми материалами

Примерами использования такой методики служат часто встречающиеся в быту изделия с хромировкой (), с серебрением, «оцинковкой» и тому подобное.

Как вариант – защита керамикой, стеклом, покрытие бетоном, цементными растворами (обмазка) и так далее.

Пассивация

Смысл заключается в том, чтобы резко снизить химическую активность металла. Для этого производится обработка его поверхности соответствующими спецреактивами.

Снижение агрессивности среды

  • Использование веществ, которые снижают интенсивность коррозийных процессов (ингибиторов).
  • Осушка воздуха.
  • Его хим/очистка (от вредных примесей) и ряд других методик, которые могут применяться и в быту.
  • Гидрофобизация почвы (засыпки, введение в нее спецвеществ) с целью снижения агрессивности грунта.

Обработка ядохимикатами

Используется в случаях, когда есть вероятность развития так называемой «биокоррозии».

Технологические способы защиты

Легирование

Самый известный способ. Смысл в том, чтобы на основе металла создать сплав, инертный по отношению к агрессивным воздействиям. Но реализуется только в промышленных масштабах.

Как следует из приведенной информации, не все методики антикоррозийной защиты можно применять в быту. В этом плане возможности «частника» существенно ограничены.

    Описание

    Коррозия металла представляет собой его разрушение, как результат окисления под действием химических или электрохимических процессов. Яркими примером такой коррозии является ржавление. Однако разновидностей коррозии металлов немало.

    Виды коррозии металла

    Существует несколько классификаций коррозии металлов. Так, по виду разрушений выделяют сплошную, местную и точечную коррозии. Первая поражает всю поверхность металла равномерно. При местной коррозии выделяются отдельные коррозионные пятна. А точечная коррозия указывает на начальную стадию поражения и проявляется в отдельных точках разрушений.

    По характеру проникновения внутрь металла можно выделить межкристаллитную (интеркристаллитную) и транскристаллитную коррозии. Первая проникает между зернами металла, выбирая наиболее слабые места их соединений. Вторая проходит прямо через зерна металла. Обе опасны тем, что быстро приводят к растрескиванию металла и потере им прочности. При этом поверхность изделия может оставаться нетронутой.

    Отдельно в данной классификации можно выделить ножевую коррозию, которая обычно приводит к ровной трещине, располагающейся параллельно сварочному шву. Как правило, она возникает при использовании металлических изделий в агрессивных средах.

    По способу взаимодействия металла со средой принято выделять химическую и электрохимическую коррозию. металла . При химической атомы металла связываются с атомами действующих на него окислителей, входящих в состав среды. Как правило, это происходит при взаимодействии со средой, не являющейся проводником электричества. При электрохимической коррозии катионы кристаллической решетки металла связываются с другими составляющими коррозионной среды. При этом сам окислитель заполучает высвободившиеся электроны. Подобный тип коррозии характерен для взаимодействия металлов с растворами или расплавами электролитов.

    Можно выделить виды коррозии металла по типу среды, воздействующей на него. Так, выделяют газовую, атмосферную, жидкостную и подземную коррозии. Однако чаще всего речь идет о смешанных типах коррозии, когда на металл воздействует сразу несколько сред.

    Методы защиты металлов от коррозии

    Существует несколько основных методов защиты металла от коррозии:
    - увеличение химического состава металла с целью повышения его антикоррозийных характеристик;
    - изоляция поверхности металла антикоррозийными материалами;
    - снижение агрессивности среды, в которой производятся и эксплуатируются металлические изделия;
    - наложение внешнего тока, обеспечивающего электрохимическую защиту от коррозии.
    Таким образом, можно защитить металлические изделия от коррозии до начала их эксплуатации или во время нее.

    Мы давно занимаемся проблемой защиты металла от коррозии и можем предложить наилучшие варианты. Самый простой из них и широко применяемый нами – это использование специальных металлических защитных покрытий. Так, применение анодных покрытий увеличивает до максимума отрицательных электрохимический потенциал металла, исключая возможность его коррозии. Катодное покрытие имеет менее выраженное действие и требует нанесения более толстого слоя, но при этом оно значительно увеличивает твердость и износостойкость изделия.

    Если рассматривать виды покрытия с точки зрения их получения, то можно выделить химическое и электролитическое осаждения, горячее и холодное нанесения, металлическое напыление, плакирование и термодиффузионную обработку.

    Одним из самых популярных способов защиты металла от коррозии является нанесение неметаллических составов. Это может быть пластик, керамика, каучук, битум, полиуретан, лакокрасочные составы и многое другое. Причем последние представляют собой наиболее широкий ассортимент и могут применяться в зависимости от условий среды, в которых будет использоваться изделие. Так выделяют лакокрасочные покрытия, устойчивые к действиям воды, атмосферы, химическим растворам и т. д.

    Для смягчения действия коррозионной среды можно ввести в нее небольшое количество ингибиторов, которые приводят к нейтрализации или обескислороживанию среды и образуют адсорбционную пленку, защищающую поверхность металла. При этом пленка может в некоторой степени изменить электрохимические показатели металлов.

    Электрохимическая коррозионная защита металлов заключается в катодной или анодной поляризации (внешнем воздействии тока). Это также возможно осуществить путем присоединения к металлическому изделию протекторов, замедляющих коррозию.

    В современном производстве большое значение уделяется разработке устойчивых к коррозии металлических сплавов. Например, коррозионная устойчивость значительно повышается при добавлении в железный сплав хрома и никеля. Магниевые сплавы с этой же целью легируются марганцем, а никелевые - медью.

    Проблеме защиты металлической продукции от коррозии наша компания «Черметком» уделяет большое внимание, нанося специальные покрытия, производя обработку изделий из металла электрическим током или выполняя протекторную защиту. У нас вы также можете приобрести изделия, созданные из устойчивых к коррозии сплавов. Причем металл и продукцию из него можно купить на наших складах в Москве или заказать их изготовление по индивидуальному проекту.

    Дополнительно

    Дополнительная вкладка, для размещения информации о магазине, доставке или любого другого важного контента. Поможет вам ответить на интересующие покупателя вопросы и развеять его сомнения в покупке. Используйте её по своему усмотрению.

    Вы можете убрать её или вернуть обратно, изменив одну галочку в настройках компонента. Очень удобно.

Коррозия в переводе с латинского означает «разъедание», это легко объясняет сущность данного понятия. С научной точки зрения коррозия является процессом самопроизвольного разрушения металлов вследствие химических и физико-химических взаимодействий с окружающей средой.

Причиной для начала данного процесса служит отсутствие термодинамической устойчивости того или иного металла при воздействии веществ, которые находятся в контактирующей с ним среде.

Главным преимуществом данного метода является возможность использования любых синтетических средств влажной очистки.

Катодная защита металла от коррозии

Катодную защиту металла от коррозии можно отнести к одному из основных активных способов. Суть данного метода заключается в следующем: к изделию подводится электроток отрицательного заряда, поляризующий участки элементов (пораженных коррозией), тем самым приближая их к . К аноду присоединяется положительный полюс источника тока, что сводит коррозию конструкции практически к нулю. Со временем анод разрушается, поэтому необходимо его регулярно менять.

Катодную защиту можно разделить на несколько вариантов:

  • поляризация от внешнего источника электрического тока;
  • контакт с металлом, который отличается более отрицательным электропотенциалом свободной коррозии в конкретной среде;
  • уменьшение скорости протекания катодной защиты.

Поляризацию от внешнего источника электрического тока используют довольно часто для обеспечения защиты тех сооружений, которые находятся в воде или в почве. Представленный вид защиты от коррозии лучше всего применять для олова, цинка, алюминия, меди, титана, свинца и стали (высокохромистой, углеродистой, легированной).

В роли внешнего источника тока здесь выступают станции катодной защиты, состоящие из выпрямителя, анодных заземлителей, токоподвода к защищаемой конструкции, электрода сравнения, а также анодного кабеля.

Катодную защиту от коррозии можно применять и в самостоятельном, и в дополнительном виде. Стоит отметить, что катодный метод защиты имеет также и недостатки. К ним можно отнести риск перезащиты, то есть произошло большое смещение потенциала защищаемого объекта в отрицательную сторону, которое несет с собой разрушение защитных покрытий, коррозионное растрескивание и водородное охрупчивание металла.

Протекторная защита металла от коррозии

Протекторная защита от коррозии является разновидностью катодной. При использовании данного вида защиты к конструкции или металлу присоединяется такой металл, который обладает более отрицательным электропотенциалом. В ходе этого наблюдается процесс разрушения не самой конструкции, а протектора. По истечению определенного срока протектор становится корродируемым и требует замены на новый.

Протекторную защиту чаще всего используют в тех случаях, когда между протектором с окружающей средой наблюдается небольшое переходное сопротивление.

Протекторы отличаются друг от друга радиусами защитного действия. Они определяются максимально возможным расстоянием, на которое возможно удалить протектор при условии сохранения защитного эффекта.

Данный вид защиты применяется чаще всего в тех случаях, когда вовсе нельзя или трудно (дорого) подвести к металлической конструкции ток. Применять протекторы для защиты сооружений можно в нейтральных средах, таких как морская вода, речная вода, воздух, почва и тому подобное.

Протекторы изготавливаются из следующих металлов: цинк, алюминий, магний, железо. Что касается чистых металлов, то они не способны в полной мере выполнить возложенные на них защитные функции и поэтому требуют при изготовлении протекторов дополнительного легирования.

Практические методы, а также перечень инструментов и средств, пригодных для использования при чистке акриловой ванны описаны .

Из всего вышеизложенного можно сделать вывод о том, что современная наука о коррозии металлов, а также борьбе с ней имеет достаточно большие успехи. На сегодняшний день в производство многих стран вводятся новые, нарастающие объемы изделий из металла и как результат, каждый год растут убытки в виде миллионов тонн прокорродировавшего металла и огромных потерь денежных средств, которые были затрачены на борьбу с коррозией. Все это говорит о том, что научные исследования в данной области являются чрезвычайно актуальными и важными.

    Эти методы можно разделить на 2 группы. Первые 2 метода обычно реализуются до начала производственной эксплуатации металлоизделия (выбор конструкционных материалов и их сочетаний еще на стадии проектирования и изготовления изделия, нанесение на него защитных покрытий). Последние 2 метода, напротив, могут быть осуществлены только в ходе эксплуатации металлоизделия (пропускание тока для достижения защитного потенциала, введение в технологическую среду специальных добавок-ингибиторов) и не связаны с какой-либо предварительной обработкой до начала использования.

    Вторая группа методов позволяет при необходимости создавать новые режимы защиты, обеспечивающие наименьшую коррозию изделия. Например, на отдельных участках трубопровода в зависимости от агрессивности почвы можно менять плотность катодного тока. Или для разных сортов нефти, прокачиваемой через трубы, использовать разные ингибиторы.

    Вопрос: Как применяются ингибиторы коррозии?

    Ответ: Для борьбы с коррозией металлов широко распространены ингибиторы коррозии, которые в небольших количествах вводятся в агрессивную среду и создают на поверхности металла адсорбционную пленку, тормозящую электродные процессы и изменяющую электрохимические параметры металлов.

    Вопрос: Каковы способы защиты металлов от коррозии с применением лакокрасочных материалов?

    Ответ: В зависимости от состава пигментов и пленкообразующей основы лакокрасочные покрытия могут выполнять функции барьера, пассиватора или протектора.

    Барьерная защита – это механическая изоляция поверхности. Нарушение целостности покрытия даже на уровне появления микротрещин предопределяет проникновение агрессивной среды к основанию и возникновение подпленочной коррозии.

    Пассивация поверхности металла с помощью ЛКП достигается при химическом взаимодействии металла и компонентов покрытия. К этой группе относят грунты и эмали, содержащие фосфорную кислоту (фосфатирующие), а также составы с ингибирующими пигментами, замедляющими или предотвращающими процесс коррозии.

    Протекторная защита металла достигается добавлением в материал покрытия порошковых металлов, создающих с защищаемым металлом донорские электронные пары. Для стали таковыми являются цинк, магний, алюминий. Под действием агрессивной среды происходит постепенное растворение порошка добавки, а основной материал коррозии не подвергается.

    Вопрос: Чем определяется долговечность защиты металла от коррозии лакокрасочными материалами?

    Ответ: Во-первых, долговечность защиты металла от коррозии зависит от типа (и вида) применяемого лакокрасочного покрытия. Во-вторых, определяющую роль играет тщательность подготовки поверхности металла под покраску. Наиболее трудоемким процессом при этом является удаление продуктов коррозии, образовавшихся ранее. Наносят специальные составы, разрушающие ржавчину, с последующим их механическим удалением металлическими щетками.

    В некоторых случаях удаление ржавчины практически невозможно осуществить, что предполагает широкое применение материалов, которые можно наносить непосредственно на поверхности, поврежденные коррозией – ЛКМ по ржавчине. К этой группе относят некоторые специальные грунты и эмали, используемые в многослойных или самостоятельных покрытиях.

    Вопрос: Что такое высоконаполненные двухкомпонентные системы?

    Ответ: Это – антикоррозийные лакокрасочные материалы с уменьшенным содержанием растворителя (процентное содержание летучих органических веществ в них не превышает 35%). На рынке материалов для домашнего применения в основном предлагаются однокомпонентные материалы. Главное преимущество высоконаполненных систем по сравнению с обычными – значительно лучшая коррозионная стойкость при сопоставимой толщине слоя, меньший расход материала и возможность нанесения более толстым слоем, что обеспечивает получение необходимой антикоррозионной защиты всего за 1-2 раза.

    Вопрос: Как предохранить от разрушения поверхность гальванизированной стали?

    Ответ: Антикоррозионная грунтовка на основе модифицированных винилакриловых смол на растворителе «Гальвапласт» применяется для внутренних и наружных работ на основаниях из черных металлов со снятой окалиной, гальванизированной стали, оцинкованного железа. Растворитель – уайт-спирит. Нанесение – кистью, валиком, распылением. Расход 0,10-0,12 кг/кв.м; высыхание 24 часа.

    Вопрос: Что собой представляет патина?

    Ответ: Слово «патина» обозначает пленку различных оттенков, образующуюся на поверхности меди и медьсодержащих сплавов под воздействием атмосферных факторов при естественном или искусственном старении. Иногда патиной называют оксиды на поверхности металлов, а также пленки, вызывающие со временем потускнение на поверхности камней, мрамора или деревянных предметов.

    Появление патины не является признаком коррозии, скорее всего это естественный защитный слой на медной поверхности.

    Вопрос: Можно ли искусственно создать патину на поверхности медных изделий?

    Ответ: В естественных условиях зеленая патина образуется на поверхности меди в течение 5-25 лет, в зависимости от климата и химического состава атмосферы и осадков. При этом из меди и двух ее основных сплавов – бронзы и латуни – образуются карбонаты меди: ярко-зеленый малахит Сu 2 (СО 3)(ОН) 2 и лазурно-голубой азурит Сu 2 (СО 3) 2 (ОН) 2 . Для цинксодержащей латуни возможно образование зелено-синего розазита состава (Cu,Zn) 2 (CO 3)(OH) 2 . Основные карбонаты меди можно легко синтезировать и в домашних условиях, приливая водный раствор кальцинированной соды к водному раствору соли меди, например медного купороса. При этом в начале процесса, когда в избытке находится соль меди, образуется продукт, более близкий по составу к азуриту, а в конце процесса (при избытке соды) – к малахиту.

    Сберегающее окрашивание

    Вопрос: Как защитить металлические или железобетонные конструкции от влияния агрессивной среды – солей, кислот, щелочей, растворителей?

    Ответ: Для создания химстойких покрытий существует несколько защитных материалов, у каждого из которых своя область защиты. Наиболее широкий спектр защиты имеют: эмали ХC-759, «ЭЛОКОР СБ-022» лак , ФЛК-2, грунтовки , ХС-010 и др. В каждом отдельном случае подбирается конкретная схема окраски, согласно условиям эксплуатации. Краски тиккурилла Коутингс Темабонд, Темакоут и Темахлор.

    Вопрос: Какие составы могут применяться при окраске внутренних поверхностей цистерн для керосина и других нефтепродуктов?

    Ответ: Темалайн ЛП – двухкомпонентная эпоксидная глянцевая краска с отвердителем на основе аминоаддукта. Нанесение – кистью, распылением. Высыхание 7 час.

    ЭП-0215 – грунт для защиты от коррозии внутренней поверхности кессон-баков, работающих в среде топлива с примесью воды. Наносится на поверхности из стали, магниевых, алюминиевых и титановых сплавов, эксплуатируемых в условиях различных климатических зон, при повышенных температурах и воздействии загрязненной среды.

    Пригодны для применения грунтовки БЭП-0261 и эмали БЭП-610.

    Вопрос: Какие составы могут применяться для защитного покрытия металлических поверхностей в морской и промышленной среде?

    Ответ: Краска толстопленочного типа на хлоркаучуковой основе применяется для окраски металлических поверхностей в морской и промышленной среде, подвергающихся умеренному химическому воздействию: мосты, краны, конвейеры, портовое оборудование, наружность цистерн.

    Темакоут ХБ – двухкомпонентная модифицированная эпоксидная краска применяется для грунтовки и окраски металлических поверхностей, подвергающихся атмосферному, механическому и химическому воздействию. Нанесение – кистью, распылением. Высыхание 4 часа.

    Вопрос: Какие составы следует применять для покрытия сложноочищаемых металлических поверхностей, в том числе погруженных в воду?

    Ответ: Темабонд СТ-200 – двухкомпонентная модифицированная эпоксидная краска с алюминиевым пигментированием и низким содержанием растворителей. Применяется для окраски мостов, цистерн, стальных конструкций и оборудования. Нанесение – кистью, распылением. Высыхание – 6 час.

    Темалайн БЛ – двухкомпонентное эпоксидное покрытие, не содержащее растворителей. Применяется для окраски стальных поверхностей, подвергающихся износу, химическому и механическому воздействию при погружении в воду, контейнеров для нефти или бензина, цистерн и резервуаров, очистных сооружений для сточных вод. Нанесение – безвоздушным распылением.

    Темацинк – однокомпонентная цинконасыщенная эпоксидная краска с отвердителем на основе полиамида. Используется в качестве грунтовки в эпоксидных, полиуретановых, акриловых, хлоркаучуковых системах окраски для стальных и чугунных поверхностей, подвергающихся сильным атмосферным и химическим воздействиям. Применяется для окраски мостов, кранов, стальных каркасов, стальных конструкций и оборудования. Высыхание 1 час.

    Вопрос: Как уберечь подземные трубы от образования свищей?

    Ответ: Причин прорыва любых труб может быть две: механические повреждения или действие коррозии. Если первая причина – результат случайности и безалаберности – трубу чем-то зацепили или разошелся сварной шов, то коррозии избежать никак нельзя, это закономерное явление, вызванное влажностью почвы.

    Кроме использования специальных покрытий, существует широко применяемая во всем мире защита – катодная поляризация. Она представляет собой источник постоянного тока, обеспечивающий полярный потенциал min 0,85 В, max – 1,1 В. Состоит всего лишь из обычного трансформатора переменного напряжения и диодного выпрямителя.

    Вопрос: Сколько стоит катодная поляризация?

    Ответ: Стоимость приборов катодной защиты в зависимости от их конструкции составляет от 1000 до 14 тысяч рублей. Бригада ремонтников легко может проверять поляризационный потенциал. Установка защиты – тоже не составляет больших затрат и не сопряжена с трудоемкими земляными работами.

    Защита оцинкованных поверхностей

    Вопрос: Почему оцинкованные металлы нельзя подвергать дробеструйной обработке?

    Ответ: Такая подготовка нарушает естественную коррозионную стойкость металла. Поверхности такого рода обрабатывают с помощью специального абразивного агента – круглых частиц стекла, не разрушающих защитный слой цинка на поверхности. В большинстве случаев достаточно бывает просто обработать раствором аммиака для удаления с поверхности жирных пятен и продуктов коррозии цинка.

    Вопрос: Чем восстановить поврежденное цинковое покрытие?

    Ответ: Цинкнаполненными композициями ЦинкКОС, ЦНК, «Виникор-цинк» и др., которые наносятся методом холодного цинкования и обеспечивают анодную защиту металла.

    Вопрос: Как производится защита металла с применением ЦНК (цинкнаполненных композиций)?

    Ответ: Технология холодного цинкования с применением ЦНК гарантирует абсолютную нетоксичность, пожаробезопасность, термостойкость до +800°С. Покрытие металла данным составом производится методом распыления, валиком или даже просто кистью и обеспечивает изделию, по сути, двойную защиту: и катодную, и пленочную. Срок действия такой защиты составляет 25-50 лет.

    Вопрос: В чем основные преимущества метода «холодного цинкования» перед горячим цинкованием?

    Ответ: У данного метода есть следующие преимущества:

    1. Ремонтопригодность.
    2. Возможность нанесения в условиях строительной площадки.
    3. Нет ограничений по габаритным размерам защищаемых конструкций.

    Вопрос: При какой температуре происходит нанесение термодиффузионного покрытия?

    Ответ: Нанесение термодиффузионного цинкового покрытия проводится при температурах от 400 до 500°С.

    Вопрос: Есть ли отличия коррозионной стойкости покрытия, полученного методом термодиффузионного цинкования, по сравнению с другими видами цинковых покрытий?

    Ответ: Коррозионная стойкость термодиффузионного цинкового покрытия в 3-5 раз выше гальванического и в 1,5-2 раза превышает коррозионную стойкость горячего цинкового покрытия.

    Вопрос: Какие лакокрасочные материалы можно использовать для защитно-декоративной окраски оцинкованного железа?

    Ответ: Для этого можно использовать как водоразбавляемые – грунт Г-3, краска Г-4, так и органоразбавляемые – ЭП-140, «ЭЛОКОР СБ-022» и др. Могут использоваться защитные системы Тиккурила Коутингс: 1 Темакоут ГПЛС-Праймер+Темадур, 2 Темапрайм ЕЕ+Темалак, Темалак и Темадур колеруется по RAL и TVT.

    Вопрос: Какой краской могут окрашиваться водосточные и дренажные оцинкованные трубы?

    Ответ: Sockelfarg – латексная краска черного и белого цвета на водной основе. Предназначена для нанесения как на новые, так и на ранее окрашенные поверхности на открытом воздухе. Устойчива к воздействию атмосферных явлений. Растворитель – вода. Высыхание 3 часа.

    Вопрос: Почему средства антикоррозийной защиты на водной основе применяются редко?

    Ответ: Существуют 2 основные причины: повышенная по сравнению с обычными материалами цена и бытующее в определенных кругах мнение, что водные системы обладают худшими защитными свойствами. Однако по мере ужесточения экологического законодательства, как в Европе, так и во всем мире, популярность водных систем растет. Специалисты же, испытавшие качественные материалы на водной основе, смогли убедиться, что их защитные свойства не хуже, чем у традиционных материалов, содержащих растворители.

    Вопрос: Какой прибор используется для определения толщины лакокрасочной пленки на металлических поверхностях?

    Ответ: Наиболее прост в употреблении прибор «Константа МК» – он измеряет толщину ЛКП на ферромагнитных металлах. Значительно больше функций выполняет многофункциональный толщиномер «Константа К-5», который измеряет толщину обычных ЛКП, гальванических и горячецинковых покрытий как на ферромагнитных, так и на неферромагнитных металлах (алюминий, его сплавы и др.), а также измеряет шероховатость поверхности, температуру и влажность воздуха и т.п.

    Ржавчина отступает

    Вопрос: Чем можно обработать предметы, сильно изъеденные ржавчиной?

    Ответ: Первый рецепт: смесью 50 г молочной кислоты и 100 мл вазелинового масла. Кислота превращает метагидроксид железа из ржавчины в растворимую в вазелиновом масле соль – лактат железа. Очищенную поверхность протирают тряпочкой, смоченной вазелиновым маслом.

    Второй рецепт: раствором 5 г хлорида цинка и 0,5 г гидротартрата калия, растворенного в 100 мл воды. Хлорид цинка в водном растворе подвергается гидролизу и создает кислую среду. Метагидроксид железа растворяется за счет образования в кислой среде растворимых комплексов железа с тартрат-ионами.

    Вопрос: Как открутить заржавевшую гайку подручными средствами?

    Ответ: Заржавевшую гайку можно смочить керосином, скипидаром или олеиновой кислотой. Через некоторое время ее удается отвернуть. Если гайка «упорствует», можно поджечь керосин или скипидар, которым ее смачивали. Обычно этого достаточно для разъединения гайки и болта. Самый радикальный способ: к гайке прикладывают сильно нагретый паяльник. Металл гайки расширяется, и ржавчина отстает от резьбы; теперь в зазор между болтом и гайкой можно влить несколько капель керосина, скипидара или олеиновой кислоты. На этот раз гайка уж точно отвернется!

    Есть и другой способ разъединения ржавых гаек и болтов. Вокруг заржавевшей гайки делают «чашечку» из воска или пластилина, бортик которой выше уровня гайки на 3-4 мм. В нее заливают разбавленную серную кислоту и кладут кусочек цинка. Через сутки гайка легко отвернется ключом. Дело в том, что чашечка с кислотой и металлическим цинком на железном основании – это миниатюрный гальванический элемент. Кислота растворяет ржавчину, и образовавшиеся катионы железа восстанавливаются на поверхности цинка. А металл гайки и болта не растворяется в кислоте до тех пор, пока у нее есть контакт с цинком, поскольку цинк более активный в химическом отношении металл, чем железо.

    Вопрос: Какие составы, наносимые по ржавчине, выпускает наша промышленность?

    Ответ: К отечественным органоразбавляемым составам, наносимым «по ржавчине», относятся известные материалы: грунт (некоторые производители выпускают его под названием «Инкор») и грунт-эмаль «Грэмируст». Эти эпоксидные двухкомпонентные краски (основа + отвердитель) содержат ингибиторы коррозии и целевые добавки, позволяющие наносить их на плотную ржавчину толщиной до 100 мкм. Достоинства этих грунтовок: отвердение при комнатной температуре, возможность нанесения на частично прокорродированную поверхность, высокая адгезия, хорошие физико-механические свойства и химическая стойкость, обеспечивающие длительную эксплуатацию покрытия.

    Вопрос: Чем можно окрашивать старый ржавый металл?

    Ответ: По плотнодержащейся ржавчине возможно применение нескольких лакокрасочных материалов, содержащих преобразователи ржавчины:

  • грунтовка Г-1, грунт-краска Г-2 (водоразбавляемые материалы) – при температурах до +5°;
  • грунт-эмаль ХВ-0278, грунт-эмаль АС-0332 – до минус 5°;
  • грунт-эмаль «ЭЛОКОР СБ-022» (материалы на органических растворителях) – до минус 15°С.
  • Грунт-эмаль Тиккурила Коутингс, Темабонд (колеруется по RAL иTVT)

Вопрос: Как остановить процесс ржавления металла?

Ответ: Это можно сделать с помощью «нержамет-грунта». Грунт может использоваться как в качестве самостоятельного покрытия по стали, чугуну, алюминию, так и в системе покрытий, включающей 1 слой грунтовки и 2 слоя эмали. Препарат также применяется для грунтования прокорродировавших поверхностей.

«Нержамет-грунт» работает на поверхности металла как преобразователь ржавчины, связывая ее химически, а образующаяся полимерная пленка надежно изолирует поверхность металла от атмосферной влаги. При применении состава полные затраты на ремонтно-восстановительные работы по перекраске металлоконструкций снижаются в 3-5 раз. Грунт выпускается готовым к применению. При необходимости его надо разбавить до рабочей вязкости уайт-спиритом. Препарат наносится на металлические поверхности с остатками плотно держащейся ржавчины и окалины кистью, валиком, краскопультом. Время высыхания при температуре +20° - 24 часа.

Вопрос: Часто кровельное покрытие выцветает. Какую краску можно использовать для окраски оцинкованных крыш и водостоков?

Ответ: Нержамет-цикрон. Покрытие обеспечивает длительную защиту от атмосферных воздействий, влажности, ультрафиолетового излучения, дождя, снега и т.д.

Обладает высокой укрывистостью и светостойкостью, не выцветает. Значительно продлевает срок службы оцинкованных крыш. Также покрытия Тиккурила Коутингс, Темадур и Темалак.

Вопрос: Могут ли хлоркаучуковые краски предохранить металл от ржавчины?

Ответ: Эти краски приготовлены из хлорированного каучука, диспергированного в органических растворителях. По своему составу относятся к летуче-смоляным и обладают высокой водо– и химической стойкостью. Поэтому возможно применять их для защиты от коррозии металлических и бетонных поверхностей, водопроводных труб и резервуаров.Из материалов Тиккурил Коутингс можно использовать систему Теманил МС-Праймер+ Темахлор.

Антикор в бане, ванной, бассейне

Вопрос: Каким покрытием можно защитить от коррозии банные емкости для холодной питьевой и горячей мытьевой воды?

Ответ: Для емкостей под холодную питьевую и мытьевую воду рекомендуется краска КО-42;,Эповин п од горячую воду – композиции ЦинкКОС и «Теплокор ПИГМА».

Вопрос: Что представляют собой эмалированные трубы?

Ответ: По химической стойкости они не уступают медным, титановым и свинцовым, а по себестоимости в несколько раз дешевле. Применение эмалированных труб из углеродистых сталей вместо нержавеющих дает десятикратную экономию средств. К числу достоинств такой продукции относится большая механическая прочность, в том числе в сравнении с другими видами покрытий – эпоксидными, полиэтиленовыми, пластмассовыми, а также более высокая стойкость против истирания, благодаря чему появляется возможность уменьшить диаметр труб без снижения их пропускной способности.

Вопрос: В чем особенности повторной эмалировки ванн?

Ответ: Эмалировку можно осуществлять кистью или распылением с участием профессионалов, а также кистью самостоятельно. Предварительная подготовка поверхности ванны заключается в удалении старой эмали и зачистке ржавчины. Весь процесс занимает не более 4-7 часов, еще 48 часов ванна сохнет, а пользоваться ею можно через 5-7 суток.

Ванны повторной эмалировки требуютспециального ухода. Такие ванны нельзя мыть порошками типа «Комет» и «Пемолюкс», или применяя средства, содержащие кислоту, такие, как «Силит». Недопустимо попадание на поверхность ванны лаков, в том числе и для волос, использование отбеливателя при стирке. Такие ванны, как правило, чистят мыльными средствами: стиральными порошками или средствами для мытья посуды, нанесенными на губку или мягкую тряпку.

Вопрос: Какими ЛКМ можно выполнить повторную эмалировку ванн?

Ответ: Композиция «Светлана» включает в себя эмаль, щавелевую кислоту, отвердитель, колеровочные пасты. Ванну промывают водой, протравливают щавелевой кислотой (удаляют пятна, камень, загрязнения, ржавчину и создают шероховатую поверхность). Промывают стиральным порошком. Сколы заделывают заранее. Затем в течение 25-30 минут следует нанести эмаль. При работе с эмалью и отвердителем не допускается контакт с водой. Растворитель – ацетон. Расход на ванну – 0,6 кг; высыхание – 24 часа. Полностью набирает свойства через 7 суток.

Также можно применить краску двухкомпонентную на эпоксидной основе Tikkurila «Реафлекс-50». При использовании эмали для ванн глянцевой (белая, колерующаяся) для очистки используют либо стиральные порошки, либо хозяйственное мыло. Полностью набирает свойства через 5 суток. Расход на ванну – 0,6 кг. Растворитель – технический спирт.

Б-ЭП-5297В применяют для реставрации эмалевого покрытия ванн. Это краска глянцевая, белая, возможна колеровка. Покрытие гладкое, ровное, прочное. Не следует применять для чистки абразивные порошки типа «Санитарный». Полностью набирает свойства через 7 суток. Растворители – смесь спирта с ацетоном; Р-4, №646.

Вопрос: Как обеспечить защиту от обрыва стальной арматуры в чаше плавательного бассейна?

Ответ: При неудовлетворительном состоянии кольцевого дренажа бассейна возможно размягчение и суффозия грунта. Проникновение воды под днище резервуара способно вызвать просадку грунта и образование трещин в бетонных конструкциях. В этих случаях арматура в трещинах может коррозировать до обрыва.

В таких сложных случаях реконструкция поврежденных железобетонных конструкций резервуара должна включать в себя выполнение защитного жертвенного слоя из торкрет-бетона на поверхностях железобетонных конструкций, подвергающихся выщелачивающему действию воды.

Препятствия для биоразрушений

Вопрос: Какие внешние условия определяют развитие дереворазрушающих грибов?

Ответ: Наиболее благоприятными условиями для развития дереворазрушающих грибов считаются: наличие питательных веществ воздуха, достаточная влажность древесины и благоприятная температура. Отсутствие какого-либо из этих условий будет задерживать развитие гриба, даже если он прочно укрепится в древесине. Большинство грибов хорошо развивается только при высокой относительной влажности воздуха (80-95%). При влажности древесины ниже 18% развитие грибов практически не происходит.

Вопрос: Каковы основные источники увлажнения древесины и в чем их опасность?

Ответ: К основным источникам увлажнения древесины в конструкциях различных зданий и сооружений следует отнести грунтовые (подземные) и поверхностные (ливневые и сезонные) воды. Они особенно опасны для деревянных элементов открытых сооружений, находящихся в грунте (столбов, свай, опор ЛЭП и связи, шпал и т.п.). Атмосферная влага в виде дождя и снега угрожает наземной части открытых сооружений, а также наружным деревянным элементам зданий. Эксплуатационная влага в капельно-жидком или парообразном виде в жилых помещениях присутствует в виде бытовой влаги, выделяемой при приготовлении пищи, стирке, сушке белья, мытье полов и т.д.

Большое количество влаги вносится в здание при укладке сырой древесины, применении кладочных растворов, бетонировании и др. Например, 1 кв.м уложенной древесины с влажностью до 23% при высыхании до 10-12% выделяет до 10 л воды.

Древесина зданий, просыхающая естественным путем, в течение длительного времени находится под угрозой загнивания. Если не были предусмотрены химические меры защиты, она, как правило, поражается домовым грибом в такой степени, что конструкции приходят в полную негодность.

Конденсационная влага, возникающая на поверхности или в толще конструкций, опасна потому, что она обнаруживается, как правило, уже тогда, когда в ограждающей деревянной конструкции или ее элементе произошли необратимые изменения, например, внутреннее загнивание.

Вопрос: Кто является «биологическими» врагами дерева?

Ответ: Это плесень, водоросли, бактерии, грибки и антимицеты (это нечто среднее между грибками и водорослями). Почти со всеми из них можно бороться с помощью антисептиков. Исключение составляют грибки (сапрофиты), так как антисептики действуют лишь на некоторые их виды. А ведь именно грибки – причина так широко распространенной гнили, с которой справиться сложнее всего. Профессионалы подразделяют гнили по цветам (красная, белая, серая, желтая, зеленая и коричневая). Красная гниль поражает хвойные породы дерева, белая и желтая – дуб и березу, зеленая – дубовые бочки, а также деревянные балки и перекрытия погребов.

Вопрос: Существуют ли способы нейтрализации белого домового гриба?

Ответ: Белый домовой гриб является наиболее опасным врагом деревянных сооружений. Скорость разрушения древесины белым домовым грибом такова, что за 1 месяц он полностью «съедает» четырехсантиметровый дубовый пол. Раньше в деревнях, если избу поражал этот гриб, ее немедленно сжигали, чтобы спасти от заражения все прочие строения. После чего пострадавшей семье на другом месте всем миром строили новую избу. В настоящее время, чтобы избавиться от белого домового гриба, разбирают и сжигают пораженный участок, а остальную часть пропитывают 5%-ным хромпиком (5%-ный раствор бихромата калия в 5%-ной серной кислоте), при этом рекомендуется обработать и землю на 0,5 м глубины.

Вопрос: Каковы способы защиты дерева от гниения на ранних стадиях этого процесса?

Ответ: Если процесс гниения уже начался, его можно остановить только тщательной просушкой и вентиляцией деревянных конструкций. На ранних стадиях могут помочь дезинфицирующие растворы, например, такие, как антисептические составы «Древесный лекарь». Они выпускаются в трех различных модификациях.

Марка 1 предназначена для профилактики деревянных материалов сразу после их покупки или сразу после постройки дома. Состав защищает от грибка и жука-древоточца.

Марка 2 используется, если на стенах дома уже появились грибок, плесень или «синева». Этот состав уничтожает уже имеющиеся болезни и защищает от их будущих проявлений.

Марка 3 – самый мощный антисептик, он полностью останавливает процесс гниения. Совсем недавно был разработан специальный состав (марка 4) для борьбы с насекомыми – «антижук».

SADOLIN Bio Clean – это дезинфицирующее средство для зараженных плесенью, мхом, водорослями поверхностей, созданное на основе гипохлорита натрия.

DULUX WEATHERSHIELD FUNGICIDAL WASH – высокоэффективный нейтрализатор плесени, лишайников и гнили. Эти составы применяются как внутри, так и снаружи помещения, но эффективны они лишь на ранних стадиях борьбы с гнилью. При серьезных поражениях деревянных конструкций можно остановить гниение специальными методами, но это достаточно сложная работа, выполняемая, как правило, профессионалами с помощью реставрационных химических составов.

Вопрос: Какие защитные пропитки и консервационные составы, представленные на отечественном рынке, препятствуют биокоррозии?

Ответ: Из российских антисептических препаратов необходимо упомянуть метацид (100%-ный сухой антисептик) или полисепт (25%-ный раствор того же вещества). Хорошо себя зарекомендовали такие консервационные составы, как «БИОСЕПТ», «КСД» и «КСДА». Они предохраняют древесину от поражения плесенью, грибками, бактериями, а последние два, кроме того, делают древесину трудновоспламеняемой. Текстурные покрытия «АКВАТЕКС», «СОТЕКС» и «БИОКС» избавляют от возникновения грибка, плесени и древесной синевы. Они воздухопроницаемы и имеют стойкость свыше 5 лет.

Хорошим отечественным материалом для защиты дерева является лессирующая пропитка ГЛИМС-ЛecSil. Это готовая к применению водная дисперсия на основе стирол-акрилатного латекса и реакционно-способного силана с модифицирующими добавками. При этом состав не содержит органических растворителей и пластификаторов. Лессировка резко снижает водопоглощение дерева, в результате чего его можно даже мыть, в том числе и водой с мылом, предохраняет от вымывания противопожарной пропитки, благодаря антисептическим свойствам уничтожает грибки и плесень и предупреждает их дальнейшее образование.

Из импортных антисептических составов для защиты дерева хорошо зарекомендовали себя антисептики фирмы TIKKURILA. Pinjasol Color – антисептик, образующий сплошную водоотталкивающую и атмосферостойкую.

Вопрос: Что такое инсектициды и как их применяют?

Ответ: Для борьбы с жуками и их личинками применяют ядовитые химические вещества – инсектициды контактные и кишечные. Фтористый и кремнефтористый натрий разрешены Минздравом и применяются с начала прошлого века; при их применении обязательно соблюдение мер безопасности. Для предотвращения поражения древесины жучком применяется профилактическая обработка кремнефтористыми соединениями или 7-10%-ным раствором поваренной соли. В исторические периоды повсеместного деревянного строительства вся древесина обрабатывалась на этапе заготовки. В защитный раствор добавляли анилиновые красители, что изменяло цвет древесины. В старых домах и по сей день можно встретить балки красного цвета.

Материал подготовили Л.РУДНИЦКИЙ, А.ЖУКОВ, Е.АБИШЕВ

Введение.

1.1 Понятие коррозии.

Характеристики и сущность коррозионных процессов.

2.1 Классификация коррозионных сред.

2.2 Скорость коррозии.

2.3 Основы теории коррозии.

2.4 Классификация коррозионных процессов:

по типу разрушений;

по механизму:

Химическая коррозия;

Электрохимическая коррозия.

Методы защиты от коррозии.

3.1 Легирование

3.2 Защитные пленки

3.3 Грунтовки и фосфатирование

3.4 Электрохимическая защита

3.5 Силикатные покрытия

3.6 Цементные покрытия

3.7 Покрытия металлами

3.8 Ингибиторы

Применение противокоррозионных защитных покрытий

Заключение

Список использованной литературы

ВВЕДЕНИЕ

Понятие коррозии

Термин коррозия происходит от латинского слова corrodere , что означает разъедать, разрушать.

Коррозия – это самопроизвольный процесс разрушения материалов и изделий из них под химическим воздействием окружающей среды.

Коррозия металлов – разрушение металлов вследствие физико-химического воздействия внешней среды, при котором металл переходит в окисленное (ионное) состояние и теряет присущие ему свойства.

В тех случаях, когда окисление металла необходимо для осуществления какого-либо технологического процесса, термин «коррозия» употреблять не следует. Например, нельзя говорить о коррозии растворимого анода в гальванической ванне, поскольку анод должен окислятся, посылая свои ионы в раствор, чтобы протекал нужный процесс. Нельзя также говорить о коррозии алюминия при осуществлении алюмотермического процесса. Но физико-химическая сущность изменений, происходящих с металлом во всех подобных случаях, одинакова: металл окисляется.

Характеристики и сущность коррозионных процессов

Классификация коррозионных сред

Среда, в которой металл подвергается коррозии (коррозирует) называется коррозионной или агрессивной средой . По степени воздействия на металлы коррозионные среды целесообразно разделить на:

  • неагрессивные;
  • слабоагрессивные;
  • среднеагрессивные;
  • сильноагрессивные.

Для определения степени агрессивности среды при атмосферной коррозии необходимо учитывать условия эксплуатации металлических конструкций зданий и сооружений. Степень агрессивности среды по отношению к конструкциям внутри отапливаемых и неотапливаемых зданий, зданий без стен и постоянно аэрируемых зданий определяется возможностью конденсации влаги, а также температурно-влажностным режимом и концентрацией газов и пыли внутри здания. Степень агрессивности среды по отношению к конструкциям на открытом воздухе, не защищенным от непосредственного попадания атмосферных осадков, определяется климатической зоной и концентрацией газов и пыли в воздухе. С учетом влияния метеорологических факторов и агрессивности газов разработана классификация степени агрессивности сред по отношению к строительным металлическим конструкциям. С учетом влияния метеорологических факторов и агрессивности газов разработана классификация степени агрессивности сред по отношению к строительным металлическим конструкциям, которые представлены в таблице:

Относительная

влажность внутри

помещений и

Степень агрессивности среды в зависимости от условий эксплуатации конструкций

характеристика

внутри зданиий

климатической

на открытом

в условиях

периодической конденсации влаги

без конденсации влаги

неагрессивная

неагрессивная

неагрессивная

нормальная

неагрессивная

Таким образом, защита металлических конструкций от коррозии определяется агрессивностью условий их эксплуатации. Наиболее надежными защитными системами металлических конструкций являются алюминиевые и цинковые покрытия.

Скорость коррозии

Скорость коррозии металлов и металлических покрытий в атмосферных условиях определяется комплексным воздействием ряда факторов: наличием на поверхности фазовых и адсорбционных пленок влаги, загрязненностью воздуха коррозионно-агрессивными веществами, изменением температуры воздуха и металла, образованием продуктов коррозии и так далее.

Оценка и расчет скорости коррозии должны основываться на учете продолжительности и материальном коррозионном эффекте действия на металл наиболее агрессивных факторов.

В зависимости от факторов, влияющих на скорость коррозии, целесообразно следующее подразделение условий эксплуатации металлов, подвергаемых атмосферной коррозии:

  1. Закрытые помещения с внутренними источниками тепла и влаги (отапливаемые помещения);
  2. Закрытые помещения без внутренних источников тепла и влаги (неотапливаемые помещения);
  3. Открытая атмосфера.

Основы теории коррозии

Любой коррозионный процесс является многостадийным.

  1. Подвод коррозионной среды или отдельных ее компонентов к поверхности металла.
  2. Взаимодействие среды с металлом.
  3. Полный или частичный отвод продуктов от поверхности металла (в объем жидкости, если среда жидкая).

Большинство металлов (кроме золота, серебра, платины, меди) встречаются в природе в ионном состоянии: оксиды, сульфиды, карбонаты и так далее и называются обычно рудами. Ионное состояние более выгодно, оно характеризуется меньшей внутренней энергией. Это заметно при получении металлов из руд и их коррозии. Поглощенная энергия при восстановлении металла из соединений свидетельствует о том, что свободный металл обладает более высокой энергией, чем металлическое соединение. Это приводит к тому, что металл, находящийся в контакте с коррозионно-активной средой стремится перейти в энергетически выгодное состояние с меньшим запасом энергии. Первопричиной коррозии металла является термодинамическая неустойчивость металлов в заданной среде.

Классификация коррозионных процессов

По типу разрушений

По типу разрушений коррозия бывает сплошной и местной.

При равномерном распределении коррозионных разрушений по всей поверхности металла коррозию называют равномерной или сплошной . Она не представляет собой опасности для конструкций и аппаратов, особенно в тех случаях, когда потери металлов не превышают технически обоснованных норм. Её последствия могут быть сравнительно легко учтены.

Если же значительная часть поверхности металла свободна от коррозии и последняя сосредоточена на отдельных участках, то ее называют местной. Она гораздо опаснее, хотя потери металла могут быть и небольшими. Её опасность состоит в том, что, снижая прочность отдельных участков, она резко уменьшает надёжность конструкций, сооружений, аппаратов. Местной коррозии благоприятствуют морская вода, растворы солей, в частности галогенидных: хлорид натрия, кальция, магния. Особенно большие неприятности связаны с хлоридом натрия, который разбрасывают в зимнее время на дорогах и тротуарах для удаления снега и льда. В присутствии солей они плавятся, и образующиеся растворы стекают в канализационные трубы. Соли являются активаторами коррозии и приводят к ускоренному разрушению металлов, в частности транспортных средств и подземных коммуникаций. Подсчитано, что в США применение для этой цели солей приводит к потерям на сумму 2 млрд. долларов в год в связи с коррозией двигателей и 0,5 млрд. на дополнительный ремонт дорог, подземных магистралей и мостов. Причина же использования хлорида натрия заключается в его дешевизне. В настоящее время выход лишь один – вовремя убирать снег и вывозить его на свалки. Экономически он белее чем оправдан.

Язвенная (в виде пятен различной величины), точечная, щелевая, контактная, межкристаллическая коррозия - наиболее часто встречающиеся в практике типы местной коррозии. Точечная - одна из наиболее опасных. Она заключается в образовании сквозных поражений, то есть точечных полостей – питтингов .

Коррозионное растрескивание возникает при одновременном воздействии на металл агрессивной среды и механических напряжений. В металле появляются трещины транскристаллитного характера, которые часто приводят к полному разрушению изделий.

По механизму

По механизму коррозионного процесса различают два основных типа коррозии: химическую и электрохимическую. Строго отделить один вид от другого трудно, а иногда и невозможно.

Под химической коррозией подразумевают взаимодействие металлической поверхности с окружающей средой, не сопровождающееся возникновением электрохимических (электродных) процессов на границе фаз. Она основана на реакции между металлом и агрессивным реагентом. Этот вид коррозии протекает в основном равномерно по всей поверхности металла. В связи с этим химическая коррозия менее опасна, чем электрохимическая.

Примером химической коррозии служат ржавление железа и покрытие патиной бронзы. В промышленном производстве металлы нередко нагреваются до высоких температур. В таких условиях химическая коррозия ускоряется. Многие знают, что на прокатке раскаленных кусков металла образуется окалина. Это типичный продукт химической коррозии.

Установлено, что коррозии железа способствует наличие в нём серы. Античные предметы, изготовленные из железа, устойчивы к коррозии именно благодаря низкому содержанию в этом железе серы. Сера в железе обычно содержится в виде сульфидов FeS и других. В процессе коррозии сульфиды разлагаются с выделением сероводорода H 2 S, который является катализатором коррозии железа.

Механизм химической коррозии сводится к реактивной диффузии атомов или ионов металла сквозь постепенно утолщающуюся пленку продуктов коррозии (например, окалины) и встречной диффузии атомов или ионов кислорода. По современным воззрениям этот процесс имеет ионно-электронный механизм, аналогичный процессам электропроводности в ионных кристаллах.

Особенно разнообразные процессы химической коррозии встречаются в различных производствах. В атмосфере водорода, метана и других углеводородов, оксида углерода (II), сероводорода, хлора, в среде кислот, а также в расплавах солей и других веществ протекают специфические реакции с вовлечением материала аппаратов и агрегатов, в которых осуществляется химический процесс. Задача специалистов при конструировании реактора – подобрать металл или сплав, который был бы наиболее устойчив к компонентам химического процесса.

Практически наиболее важным видом химической коррозии является взаимодействие металла при высоких температурах с кислородом и другими газообразными активными средами (HS, SO , галогены, водяные пары, CO). Подобные процессы химической коррозии металлов при повышенных температурах носят также название газовой коррозии . Многие ответственные детали инженерных конструкций сильно разрушаются от газовой коррозии (лопатки газовых турбин, сопла ракетных двигателей, элементы электронагревателей, колосники, арматура печей). Большие потери от газовой коррозии (угар металла) несет металлургическая промышленность. Стойкость против газовой коррозии повышается при введении в состав сплава различных добавок (хрома, алюминия, кремния). Добавки алюминия, бериллия и магния к меди повышают ее сопротивление газовой коррозии в окислительных средах. Для защиты железных и стальных изделий от газовой коррозии поверхность изделия покрывают алюминием (алитирование).

Под электрохимической коррозией подразумевают процесс взаимодействия металлов с электролитами в виде водных растворов, реже с неводными электролитами, например, с некоторыми органическими электропроводными соединениями или безводными расплавами солей при повышенных температурах.

Рассмотрим схему этого процесса. Сложность его заключается в том, что на одной и той же поверхности происходят одновременно два процесса, противоположные по своему химическому смыслу: окисление металла и восстановление окислителя. Оба процесса должны протекать сопряженно, чтобы сохранялось равенство числа электронов, отдаваемых металлом и присоединяющихся к окислителю в единицу времени. Только в этом случае может наступить стационарное состояние. По такому принципу протекают, например, взаимодействие металла с кислотами:

Zn + 2HCl Zn +2Cl +H

Эта суммарная реакция состоит из двух актов:

Zn Zn + 2e

Электрохимическая коррозия часто связана с наличием в металле случайных примесей или специально введенных легирующих добавок.

Многие химики в своё время были озадачены тем, что иногда реакция

Zn + H 2 SO 4 = ZnSO 4 + H 2

не протекает. Было выяснено, что в такой ситуации в раствор нужно добавить немного сульфата меди (II) (медного купороса). В этом случае на поверхности цинка выделится медь

CaSO 4 + Zn = ZnSO 4 + Cu

и водород начнёт бурно выделяться. При объяснении данного явления в 1830 году швейцарским химиком А. де-ля Ривом была создана первая электрохимическая теория коррозии.

В 1800 году, вскоре после открытия итальянцем Л. Гальвани электрохимического явления, его соотечественник А. Вольта сконструировал источник электрического тока – гальванический элемент, что открыло человечеству эру электричества. В одном из вариантов источник состоял из чередующихся медных и цинковых дисков, разделенных пористым материалом и пропитанных раствором соли. В зависимости от числа дисков получается ток различной силы. При осаждении на поверхности цинка металлической меди получается короткозамкнутый элемент. В нём цинк является анодом, а медь – катодом. Поскольку медь находится в контакте с цинком и оба эти металла окружены раствором электролита, гальванический элемент является «включенным». Цинк в виде иона Zn 2+ переходит в раствор серной кислоты, а оставшиеся от каждого атома два электрона перетекают на более электроположительный металл – медь:

Zn = Zn 2+ + 2e –

К медному аноду подходят ионы водорода, принимают электроны и превращаются в атомы водорода, а затем и в молекулы водорода:

H + + e (Cu) = H

Таким образом, потоки движения ионов разделены и при избытке кислоты процесс протекает до тех пор, пока не растворится весь цинк.

Итак, процессы электрохимической коррозии протекают по законам электрохимической кинетики, когда общая реакция взаимодействия может быть разделена на следующие, в значительной степени самостоятельные, электродные процессы:

  • анодный процесс - переход металла в раствор в виде ионов (в водных растворах, обычно гидратированных) с оставлением эквивалентного количества электронов в металле;
  • катодный процесс - ассимиляция появившихся в металле избыточных электронов деполяризаторами.

Различают коррозию с водородной, кислородной или окислительной деполяризацией. При наличии в растворе газообразного кислорода и невозможностью протекания процесса коррозии с водородной деполяризацией основную роль деполяризатора исполняет кислород. Коррозионные процессы, у которых катодная деполяризация осуществляется растворенным в электролите кислородом, называют процессами коррозии металлов с кислородной деполяризацией . Это наиболее распространенный тип коррозии металла в воде, в нейтральных и даже в слабокислых солевых растворах, в морской воде, в земле, в атмосфере воздуха.

Общая схема кислородной деполяризации сводится к восстановлению молекулярного кислорода до иона гидроокисла:

O + 4e +2HO 4OH

Коррозия металла с кислородной деполяризацией в большинстве практических случаев происходит в электролитах, соприкасающихся с атмосферой, парциальное давление кислорода в которой равно 0,21 атм.

Каждый процесс с кислородной деполяризацией включает следующие последовательные стадии.

  1. Растворение кислорода в электролите.
  2. Транспортировка растворенного кислорода в растворе электролита (за счет диффузии или перемешивания).
  3. Перенос кислорода в результате движения электролита.
  4. Перенос кислорода в диффузионном слое электролита или в пленке продуктов коррозии металла к катодным участкам поверхности.
  5. Ионизация кислорода:

В реальных условиях коррозии металла наиболее затрудненными стадиями процесса являются:

  1. Реакция ионизации кислорода на катоде. Возникающую при этом поляризацию называют перенапряжением кислорода. Говорят, что процесс идет с кинетическим контролем.
  2. Диффузия кислорода к катоду, либо перенапряжение диффузии. В этом случае, говорят, что процесс идет с диффузионным контролем.

Возможны случаи, когда обе стадии – ионизация кислорода и диффузия кислорода оказывают влияние на процесс. Тогда говорят, о кинетически-диффузионном контроле.

Сущность первой электрохимической теории состояла в том, что примеси в металлах создают микрогальванические элементы, в которых происходит перетекание электронов от анодных участков к катодным. Поскольку катодный и анодный процессы разделены на поверхности, то разделены и противоположные потоки ионов, атомов и молекул. Разделенные потоки не мешают друг другу, и по этой причине процесс коррозии протекает быстрее, чем в случае микрогальванических элементов.

Конечно, в настоящее время теории электрохимической коррозии выглядят гораздо более совершенными. Они основаны на многочисленных экспериментальных фактах и выражены в математической форме.

Различают следующие типы электрохимической коррозии , имеющие наиболее важное практическое значение.

1. Коррозия в электролитах. К этому типу относятся коррозия в природных водах (морской и пресной), а также различные виды коррозии в жидких средах. В зависимости от характера среды различают:

а) кислотную ;

б) щелочную ;

в) солевую ;

г) морскую коррозию.

По условиям воздействия жидкой среды на металл этот тип коррозии также характеризуется как:

  • коррозия при полном погружении;
  • при неполном погружении;
  • при переменном погружении.

Каждый из этих подтипов имеет свои характерные особенности.

2 . Почвенная (грунтовая, подземная) коррозия - воздействие на металл грунта, который в коррозионном отношении должен рассматриваться как своеобразный электролит. Характерной особенностью подземной электрохимической коррозии является большое различие в скорости доставки кислорода (основной деполяризатор) к поверхности подземных конструкций в разных почвах (в десятки тысяч раз). Значительную роль при коррозии в почве играет образование и функционирование макрокоррозионных пар вследствие неравномерной аэрации отдельных участков конструкции, а также наличие в земле блуждающих токов. В ряде случаев на скорость электрохимической коррозии в подземных условиях оказывает существенное влияние также развитие биологических процессов в почве.

3. Атмосферная коррозия - коррозия металлов в условиях атмосферы, а также любого влажного газа; наблюдается под конденсационными видимыми слоями влаги на поверхности металла (мокрая атмосферная коррозия ) или под тончайшими невидимыми адсорбционными слоями влаги (влажная атмосферная коррозия ). Особенностью атмосферной коррозии является сильная зависимость ее скорости и механизма от толщины слоя влаги на поверхности металла или степени увлажнения образовавшихся продуктов коррозии.

4. Коррозия в условиях механического воздействия. Этому типу разрушения подвергаются многочисленные инженерные сооружения, работающие как в жидких электролитах, так и в атмосферных и подземных условиях. Наиболее типичными видами подобного разрушения являются:

  • Коррозионное растрескивание ; при этом характерно образование трещин, которые могут распространяться не только межкристально, но также и транскристально. Примером подобного разрушения является щелочная хрупкость котлов, сезонное растрескивание латуней, а также растрескивание некоторых конструкционных высокопрочных сплавов.
  • Коррозионная усталость , вызываемая воздействием коррозионной среды и знакопеременных или пульсирующих механических напряжений. Этот вид разрушения также характеризуется образованием меж- и транскристаллитных трещин. Разрушения металлов от коррозионной усталости встречаются при эксплуатации различных инженерных конструкций (валов гребных винтов, рессор автомобилей, канатов, штанг глубинных насосов, охлаждаемых валков прокатных станов и др.).
  • Коррозионная кавитация , являющаяся обычно следствием энергичного механического воздействия коррозионной среды на поверхность металла. Подобное коррозионно-механическое воздействие может приводить к весьма сильным местным разрушениям металлических конструкций (например, для гребных винтов морских судов). Механизм разрушения от коррозионной кавитации близок к разрушению от поверхностной коррозионной усталости.
  • Коррозионная эрозия , вызываемая механическим истирающим воздействием другого твердого тела при наличии коррозионной среды или непосредственным истирающим действием самой коррозионной среды. Это явление иногда называют также коррозионным истиранием или фреттинг-коррозией.

МЕТОДЫ ЗАЩИТЫ ОТ КОРРОЗИИ

Проблема защиты металлов от коррозии возникла почти в самом начале их использования. Люди пытались защитить металлы от атмосферного воздействия с помощью жира, масел, а позднее и покрытием другими металлами и, прежде всего, легкоплавким оловом. В трудах древнегреческого историка Геродота (V век до нашей эры) уже имеется упоминание о применении олова для защиты железа от коррозии

Задачей химиков было и остается выяснение сущности явлений коррозии, разработка мер, препятствующих или замедляющих её протекание. Коррозия металлов осуществляется в соответствии с законами природы и поэтому ее нельзя полностью устранить, а можно лишь замедлить.

В зависимости от характера коррозии и условий ее протекания применяются различные методы защиты. Выбор того или иного способа определяется его эффективностью в данном конкретном случае, а также экономической целесообразностью.

Легирование

Имеется способ уменьшения коррозии металлов, который строго нельзя отнести к защите. Этим способом является получение сплавов, которое называется легирование . В настоящее время создано большое число нержавеющих сталей путем присадок к железу никеля, хрома, кобальта и др. Такие стали, действительно, не покрываются ржавчиной, но их поверхностная коррозия имеет место, хотя и с малой скоростью. Оказалось, что при использовании легирующих добавок коррозионная стойкость меняется скачкообразно. Установлено правило, названное правилом Таммана, согласно которому резкое повышение устойчивости к коррозии железа наблюдается при введении легирующей добавки в количестве 1/8 атомной доли, то есть один атом легирующей добавки приходится на восемь атомов железа. Считается, что при таком соотношении атомов происходит их упорядоченное расположение в кристаллической решетке твердого раствора, что и затрудняет коррозию.

Защитные пленки

Одним из наиболее распространенных способов защиты металлов от коррозии является нанесение на их поверхность защитных пленок : лака, краски, эмали, других металлов. Лакокрасочные покрытия наиболее доступны для широкого круга людей. Лаки и краски обладают низкой газо- и паропроницаемостью, водоотталкивающими свойствами, поэтому они препятствуют доступу к поверхности металла воды, кислорода и содержащихся в атмосфере агрессивных компонентов. Покрытие поверхности металла лакокрасочным слоем не исключает коррозию, а служит для нее лишь преградой, а значит, лишь тормозит процесс коррозии. Именно поэтому важное значение имеет качество покрытия – толщина слоя, пористость, равномерность, проницаемость, способность набухать в воде, прочность сцепления (адгезия). Качество покрытия зависит от тщательности подготовки поверхности и способа нанесения защитного слоя. Окалина и ржавчина должны быть удалены с поверхности покрываемого металла. В противном случае они будут препятствовать хорошей адгезии покрытия с поверхностью металла. Низкое качество покрытия нередко связано с повышенной пористостью. Часто она возникает в процессе формирования защитного слоя в результате испарения растворителя и удаления продуктов отверждения и деструкции (при старении пленки). Поэтому обычно рекомендуют наносить не один толстый слой, а несколько тонких слоев покрытия. Во многих случаях увеличение толщины покрытия приводит к ослаблению адгезии защитного слоя с металлом. Большой вред наносят воздушные полости, пузыри. Они образуются при низком качестве выполнения операции нанесения покрытия.

Для снижения смачиваемости водой лакокрасочные покрытия иногда, в свою очередь, защищают восковыми составами или кремнийорганическими соединениями. Лаки и краски наиболее эффективны для защиты от атмосферной коррозии. В большинстве случаев они непригодны для защиты подземных сооружений и конструкций, так как трудно предупредить механические повреждения защитных слоев при контакте с грунтом. Опыт показывает, что срок службы лакокрасочных покрытий в этих условиях невелик. Намного практичнее оказалось применять толстослойные покрытия из каменноугольной смолы (битума).

В некоторых случаях пигменты красок выполняют также роль ингибиторов коррозии (об ингибиторах будет сказано далее). К числу таких пигментов относятся хроматы стронция, свинца и цинка (SrCrO 4 , PbCrO 4 , ZnCrO 4).

Грунтовки и фосфатирование

Часто под лакокрасочный слой наносят грунтовки. Пигменты, входящие в ее состав, также должны обладать ингибиторными свойствами. Проходя через слой грунтовки, вода растворяет некоторое количество пигмента и становится менее коррозионноактивной. Среди пигментов, рекомендуемых для грунтов, наиболее эффективным признан свинцовый сурик Pb 3 O 4­ .

Вместо грунтовки иногда проводят фосфатирование поверхности металла. Для этого на чистую поверхность кистью или распылителем наносят растворы ортофосфатов железа (III), марганца (II) или цинка (II), содержащих и саму ортофосфорную кислоту H 3 PO 4 . В заводских условиях фосфатирование ведут при 99-97 0 С в течение 30-90 минут. В образование фосфатного покрытия вносят вклад металл, растворяющийся в фосфатирующейся смеси, и оставшиеся на его поверхности оксиды.

Для фосфатирования поверхности стальных изделий разработано несколько различных препаратов. Большинство из них состоят из смеси фосфатов марганца и железа. Возможно, наиболее распространенным препаратом является «мажеф» – смесь дигидрофосфатов марганца Mn(H 2 PO 4) 2 , железа Fe(H 2 PO 4) 2 и свободной фосфорной кислоты. Название препарата состоит из первых букв компонентов смеси. По внешнему виду мажеф – это мелкокристаллический порошок белого цвета с соотношением между марганцем и железом от 10:1 до 15:1. Он состоит из 46-52% P 2 O 5 ; не менее 14% Mn; 0,3-3% Fe. При фосфатировании мажефом стальное изделие помещается в его раствор, нагретый примерно до ста градусов. В растворе происходит растворение с поверхности железа с выделением водорода, а на поверхности образуется плотный, прочный и малорастворимый в воде защитный слой фосфатов марганца и железа серо-черного цвета. При достижении толщины слоя определенной величины дальнейшее растворение железа прекращается. Пленка фосфатов защищает поверхность изделия от атмосферных осадков, но мало эффективна от растворов солей и даже слабых растворов кислот. Таким образом, фосфатная пленка может служить лишь грунтом для последовательного нанесения органических защитных и декоративных покрытий – лаков, красок, смол. Процесс фосфатирования длится 40-60 минут. Для его ускорения в раствор вводят 50-70 г/л нитрата цинка. В этом случае время сокращается в 10-12 раз.

Электрохимическая защита

В производственных условиях используют также электрохимический способ – обработку изделий переменным током в растворе фосфата цинка при плотности тока 4 А/дм 2 и напряжении 20 В и при температуре 60-70 0 С. Фосфатные покрытия представляют собой сетку плотносцепленных с поверхностью фосфатов металлов. Сами по себе фосфатные покрытия не обеспечивают надежной коррозионной защиты. Преимущественно их используют как основу под окраску, обеспечивающую хорошее сцепление краски с металлом. Кроме того, фосфатный слой уменьшает коррозионные разрушения при образовании царапин или других дефектов.

Силикатные покрытия

Для защиты металлов от коррозии используют стекловидные и фарфоровые эмали, коэффициент теплового расширения которых должен быть близок к таковому для покрываемых металлов. Эмалирование осуществляют нанесением на поверхность изделий водной суспензии или сухим напудриванием. Вначале на очищенную поверхность наносят грунтовочный слой и обжигают его в печи. Далее наносят слой покровной эмали и обжиг повторяют. Наиболее распространены стекловидные эмали – прозрачные или загашенные. Их компонентами являются SiO 2 (основная масса), B 2 O 3 , Na 2 O, PbO. Кроме того, вводят вспомогательные материалы: окислители органических примесей, оксиды, способствующие сцеплению эмали с эмалируемой поверхностью, глушители, красители. Эмалирующий материал получают сплавлением исходных компонентов, измельчением в порошок и добавлением 6-10% глины. Эмалевые покрытия в основном наносят на сталь, а также на чугун, медь, латунь и алюминий.

Эмали обладают высокими защитными свойствами, которые обусловлены их непроницаемостью для воды и воздуха (газов) даже при длительном контакте. Их важным качеством является высокая стойкость при повышенных температурах. К основным недостаткам эмалевых покрытий относят чувствительность к механическим и термическим ударам. При длительной эксплуатации на поверхности эмалевых покрытий может появиться сетка трещин, которая обеспечивает доступ влаги и воздуха к металлу, вследствие чего и начинается коррозия.

Цементные покрытия

Для защиты чугунных и стальных водяных труб от коррозии используют цементные покрытия. Поскольку коэффициенты теплового расширения портландцемента и стали близки, то он довольно широко применяется для этих целей. Недостаток портландцементных покрытий тот же, что и эмалевых, – высокая чувствительность к механическим ударам.

Покрытие металлами

Широко распространенным способом защиты металлов от коррозии является покрытие их слоем других металлов. Покрывающие металлы сами корродируют с малой скоростью, так как покрываются плотной оксидной пленкой. Покрывающий слой наносят различными методами:

  • горячее покрытие – кратковременное погружение в ванну с расплавленным металлом;
  • гальваническое покрытие – электроосаждение из водных растворов электролитов;
  • металлизация – напыление;
  • диффузионное покрытие – обработка порошками при повышенной температуре в специальном барабане;
  • с помощью газофазной реакции, например:

3CrCl 2 + 2Fe 1000 ‘ C 2FeCl 3 + 3Cr (в расплаве с железом).

Имеются и другие методы нанесения металлических покрытий. Например, разновидностью диффузионного способа является погружение изделий в расплав хлорида кальция, в котором растворены наносимые металлы.

В производстве широко используется химическое нанесение металлических покрытий на изделия. Процесс химического металлирования является каталитическим или автокаталитическим, а катализатором является поверхность изделия. Используемый раствор содержит соединение наносимого металла и восстановитель. Поскольку катализатором является поверхность изделия, выделение металла и происходит именно на ней, а не в объеме раствора. В настоящее время разработаны методы химического покрытия металлических изделий никелем, кобальтом, железом, палладием, платиной, медью, золотом, серебром, родием, рутением и некоторыми сплавами на основе этих металлов. В качестве восстановителей используют гипофосфит и боргидрид натрия, формальдегид, гидразин. Естественно, что химическим никелированием можно наносить защитное покрытие не на любой металл.

Металлические покрытия делят на две группы:

Коррозионностойкие;

Протекторные.

Например, для покрытия сплавов на основе железа в первую группу входят никель, серебро, медь, свинец, хром. Они более электроположительны по отношению к железу, то есть в электрохимическом ряду напряжений металлов стоят правее железа. Во вторую группу входят цинк, кадмий, алюминий. Они более электроотрицательны по отношению к железу.

В повседневной жизни человек чаще всего встречается с покрытиями железа цинком и оловом. Листовое железо, покрытое цинком, называют оцинкованным железом, а покрытое оловом – белой жестью. Первое в больших количествах идет на кровли домов, а второе – на изготовление консервных банок. Впервые способ хранения пищевых продуктов в жестяных банках предложил повар Н.Ф. Аппер в 1810 году. И то, и другое железо получают, главным образом, протягиванием листа железа через расплав соответствующего металла.

Металлические покрытия защищают железо от коррозии при сохранении сплошности. При нарушении же покрывающего слоя коррозия изделия протекает даже более интенсивно, чем без покрытия. Это объясняется работой гальванического элемента железо–металл. Трещины и царапины заполняются влагой, в результате чего образуются растворы, ионные процессы в которых облегчают протекание электрохимического процесса (коррозии).

Ингибиторы

Применение ингибиторов – один из самых эффективных способов борьбы с коррозией металлов в различных агрессивных средах. Ингибиторы – это вещества, способные в малых количествах замедлять протекание химических процессов или останавливать их. Название ингибитор происходит от латинского inhibere, что означает сдерживать, останавливать. Ещё по данным 1980 года, число известных науке ингибиторов составило более пяти тысяч. Ингибиторы дают народному хозяйству немалую экономию.

Ингибирующее воздействие на металлы, прежде всего на сталь, оказывает целый ряд неорганических и органических веществ, которые часто добавляются в среду, вызывающую коррозию. Ингибиторы имеют свойство создавать на поверхности металла очень тонкую пленку, защищающую металл от коррозии.

Ингибиторы в соответствии с Х. Фишером можно сгруппировать следующим образом.

1) Экранирующие, то есть покрывающие поверхность металла тонкой пленкой. Пленка образуется в результате поверхностной адсорбции. При воздействии физических ингибиторов химических реакций не происходит

2) Окислители (пассиваторы) типа хроматов, вызывающие образование на поверхности металла плотно прилегающего защитного слоя окисей, которые замедляют протекание анодного процесса. Эти слои не очень стойки и при определенных условиях могут подвергаться восстановлению. Эффективность пассиваторов зависит от толщины образующегося защитного слоя и его проводимости;

3) Катодные – повышающие перенапряжение катодного процесса. Они замедляют коррозию в растворах неокисляющих кислот. К таким ингибиторам относятся соли или окислы мышьяка и висмута.

Эффективность действия ингибиторов зависит в основном от условий среды, поэтому универсальных ингибиторов нет. Для их выбора требуется проведение исследований и испытаний.

Наиболее часто применяются следующие ингибиторы: нитрит натрия, добавляемый, например, к холодильным соляным растворам, фосфаты и силикаты натрия, бихромат натрия, различные органические амины, сульфоокись бензила, крахмал, танин и т. п. Поскольку ингибиторы со временем расходуются, они должны добавляться в агрессивную среду периодически. Количество ингибитора, добавляемого в агрессивные среды, невелико. Например, нитрита натрия добавляют в воду в количестве 0,01-0,05%.

Ингибиторы подбираются в зависимости от кислого или щелочного характера среды. Например, часто применяемый в качестве ингибитора нитрит натрия может использоваться в основном в щелочной среде и перестает быть эффективным даже в слабокислых средах.

Применение противокоррозионных

защитных покрытий

Для защиты оборудования и строительных конструкций от коррозии в отечественной и зарубежной противокоррозионной технике применяется большой ассортимент различных химически стойких материалов – листовые и пленочные полимерные материалы, бипластмассы, стеклопластики, углеграфитовые, керамические и другие неметаллические химически стойкие материалы.

В настоящее время расширяется применение полимерных материалов, благодаря их ценным физико-химическим показателям, меньшему удельному весу и др.

Большой интерес для применения в противокоррозионной технике представляет новый химически стойкий материал – шлакоситалл .

Значительные запасы и дешевизна исходного сырья – металлургических шлаков – обусловливают экономическую эффективность производства и применения шлакоситалла.

Шлакоситалл по физико-механическим показателям и химической стойкости не уступает основным кислотоупорным материалам (керамике, каменному литью), широко применяемым в противокоррозионной технике.

Среди многочисленных полимерных материалов, применяемых за рубежом в противокоррозионной технике, значительное место занимают конструкционные пластмассы, а также стеклопластики, получаемые на основе различных синтетических смол и стекловолокнистых наполнителей.

В настоящее время химическая промышленность выпускает значительный ассортимент материалов, обладающих высокой стойкостью к действию различных агрессивных сред. Особое место среди этих материалов занимает полиэтилен . Он инертен во многих кислотах, щелочах и растворителях, теплостоек до температуры + 700 0 С и так далее.

Другими направлениями использования полиэтилена в качестве химически стойкого материала являются порошкообразное напыление и дублирование полиэтилена стеклотканью. Широкое применение полиэтиленовых покрытий объясняется тем, что они, будучи одними из самых дешевых, образуют покрытия с хорошими защитными свойствами. Покрытия легко наносятся на поверхность различными способами, в том числе пневматическим и электростатическим распылением.

Также в противокоррозионной технике особого внимания заслуживают монолитные полы на основе синтетических смол. Высокая механическая прочность, химическая стойкость, декоративный вид - все эти положительные качества делают монолитные полы чрезвычайно перспективными.

Продукция лакокрасочной промышленности находит применение в различных отраслях промышленности и строительства в качестве химически стойких покрытий. Лакокрасочное пленочное покрытие, состоящее из последовательно наносимых на поверхность слоев грунтовки, эмали и лака, применяют для противокоррозионной защиты конструкций зданий и сооружений (ферм, ригелей, балок, колонн, стеновых панелей), а также наружных и внутренних поверхностей емкостного технологического оборудования, трубопроводов, газоходов, воздуховодов вентиляционных систем, которые в процессе эксплуатации не подвергаются механическим воздействиям твердых частиц, входящих в состав среды.

В последнее время большое внимание уделяется получению и применению комбинированных покрытий , поскольку в ряде случаев использование традиционных методов защиты является неэкономичным. В качестве комбинированных покрытий, как правило, используется цинковое покрытие с последующей окраской. При этом цинковое покрытие играет роль грунтовки.

Перспективно применение резин на основе бутилкаучука, которые отличаются от резин на других основах повышенной химической стойкостью в кислотах и щелочах, включая концентрированную азотную и серную кислоты. Высокая химическая стойкость резин на основе бутилкаучука позволяет более широко применять их при защите химической аппаратуры.

Данные способы находят широкое применение в промышленности в силу многих своих преимуществ – уменьшения потерь материалов, увеличения толщины покрытия, наносимого за один слой, уменьшения расхода растворителей, улучшение условий производства окрасочных работ и т.д.

ЗАКЛЮЧЕНИЕ

Металлы составляют одну из основ цивилизации на планете Земля. Их широкое внедрение в промышленное строительство и транспорт произошло на рубеже XVIII-XIX. В это время появился первый чугунный мост, спущено на воду первое судно, корпус которого был изготовлен из стали, созданы первые железные дороги. Начало практического использования человеком железа относят к IX веку до нашей эры. Именно в этот период человечество перешло из бронзового века в век железный.

В XXI веке высокие темпы развития промышленности, интенсификация производственных процессов, повышение основных технологических параметров (температура, давление, концентрация реагирующих средств и др.) предъявляют высокие требования к надежной эксплуатации технологического оборудования и строительных конструкций. Особое место в комплексе мероприятий по обеспечению бесперебойной эксплуатации оборудования отводится надежной защите его от коррозии и применению в связи с этим высококачественных химически стойких материалов.

Необходимость осуществления мероприятий по защите от коррозии диктуется тем обстоятельством, что потери от коррозии приносят чрезвычайно большой ущерб. По имеющимся данным, около 10% ежегодной добычи металла расходуется на покрытие безвозвратных потерь вследствие коррозии и последующего распыления. Основной ущерб от коррозии металла связан не только с потерей больших количеств металла, но и с порчей или выходом из строя самих металлических конструкций, т.к. вследствие коррозии они теряют необходимую прочность, пластичность, герметичность, тепло- и электропроводность, отражательную способность и другие необходимые качества. К потерям, которые терпит народное хозяйство от коррозии, должны быть отнесены также громадные затраты на всякого рода защитные антикоррозионные мероприятия, ущерб от ухудшения качества выпускаемой продукции, выход из строя оборудования, аварий в производстве и так далее.

Защита от коррозии является одной из важнейших проблем, имеющей большое значение для народного хозяйства.

Коррозия является физико-химическим процессом, защита же от коррозии металлов – проблема химии в чистом виде.

СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ

Краткая химическая энциклопедия под редакцией И.А. Кнуянц и др. – М.: Советская энциклопедия, 1961-1967, Т.2.

Советский энциклопедический словарь. – М.: Советская энциклопедия, 1983.

Андреев И.Н. Коррозия металлов и их защита. – Казань: Татарское книжное издательство, 1979.

Войтович В.А., Мокеева Л.Н. Биологическая коррозия. – М.: Знание, 1980, № 10.

Лукьянов П.М. Краткая история химической промышленности. – М.: Издательство АН СССР, 1959.

Теддер Дж., Нехватал А., Джубб А. Промышленная органическая химия. – М.: Мир, 1977.

Улиг Г.Г., Реви Р.У. Коррозия и борьба с ней. – Л.: Химия, 1989.

Никифоров В.М. Технология металлов и конструкционные материалы. – М.: Высшая школа, 1980.